Рубрика «numpy» - 3

Предостерегающий урок.

Сделаем классификатор тональности!

Анализ тональности (сентимент-анализ) — очень распространённая задача в обработке естественного языка (NLP), и это неудивительно. Для бизнеса важно понимать, какие мнения высказывают люди: положительные или отрицательные. Такой анализ используется для мониторинга социальных сетей, обратной связи с клиентами и даже в алгоритмической биржевой торговле (в результате боты покупают акции Berkshire Hathaway после публикации положительных отзывов о роли Энн Хэтэуэй в последнем фильме).

Метод анализа иногда слишком упрощён, но это один из самых простых способов получить измеримые результаты. Просто подаёте текст — и на выходе положительные и отрицательные оценки. Не нужно разбираться с деревом синтаксического анализа, строить граф или какое-то другое сложное представление.
Читать полностью »

«Это легко. Берём метрику Шварцшильда, ищем символы Кристоффеля, вычисляем их производную, записываем геодезическое уравнение, меняем некоторые декартовы координаты (чтобы не страдать), получаем большое многострочное ОДУ — и решаем его. Примерно так».

Как нарисовать чёрную дыру. Геодезическая трассировка лучей в искривлённом пространстве-времени - 1

Теперь ясно, что чёрные дыры меня засосали. Они бесконечно увлекательны. В прошлый раз я разбирался с визуализацией геометрии Шварцшильда. Меня поглотила проблема точного представления, как кривизна такого пространства-времени влияет на внешний вид неба (поскольку фотоны из удалённых источников движутся вдоль геодезических линий, изогнутых чёрной дырой) для создания интерактивного моделирования. Вот результат (работает в браузере). Хитрость в максимально возможном предрасчёте отклонения световых лучей. Всё работает более-менее нормально, но конечно, такая симуляция далека от идеала, потому что в реальности там не производится никакой трассировки (для неспециалистов: восстановление назад во времени местонахождения световых лучей, падающих в камеру).

Мой новый проект исправляет этот недостаток, отказавшись от эффективности/интерактивности самым простым образом: это рейтрейсер чисто на CPU. Трассировка выполняется максимально точно и максимально долго. Рендеринг изображения вверху занял 15 5 минут (спасибо, RK4) на моём ноутбуке.
Читать полностью »

Python и DataScience: изучаем возможности универсальной библиотеки Numpy - 1

От переводчика: это перевод материала Ракшита Васудева, давно и плотно изучающего DataScience и применение в ней языка Python. Автор рассказывает о мощной библиотеке Numpy, который позволяет реализовать многие возможности машинного обучения и работы с большими данными.

Numpy — математическая библиотека для Python. Она позволяет выполнять разного рода вычисления эффективно и быстро. Она значительно расширяет функциональность Python благодаря специальным решениям, которые в ней применяются. В этой статье рассказывается о базовых возможностях Numpy, и это только первая часть; чуть позже будут опубликованы и другие. Статья для тех, кто только начинает изучать Numpy, вступая в дивный мир математики в Python.
Читать полностью »

Светлой памяти моего учителя — первого декана физико-математического факультета Новочеркасского политехнического института, заведующего кафедрой «Теоретическая механика» Кабелькова Александра Николаевича

Введение

Август, лето подходит к концу. Народ яростно рванул на моря, да оно и неудивительно — самый сезон. А на хабре, тем временем, буйным цветом распускается и пахнет лженаука. Если говорить о теме данного выпуска «Моделирования...», то в нем мы совместим приятное с полезным — продолжим обещанный цикл и совсем чуть-чуть поборемся с этой самой лженаукой за пытливые умы современной молодежи.

Моделирование динамических систем: Как движется Луна? - 1

А вопрос ведь действительной не праздный — со школьных лет мы привыкли считать, что наш ближайший спутник в космическом пространстве — Луна движется вокруг Земли с периодом 29,5 суток, особенно не вдаваясь в сопутствующие подробности. На самом же деле наша соседка своеобразный и в какой-то степени уникальный астрономический объект, с движением которого вокруг Земли не всё так просто, как, возможно хотелось бы некоторым моим коллегам из ближайшего зарубежья.

Итак, оставив полемику в стороне, попытаемся с разных сторон, в меру своей компетенции, рассмотреть эту безусловно красивую, интересную и очень показательную задачу.

Читать полностью »

Предисловие переводчика

Всем здравствуйте, вот мы и подошли к конечной части. Приятного чтения!
Навигация:

Математика многочленов

NumPy предоставляет методы для работы с полиномами. Передавая список корней, можно получить коэффициенты уравнения:

>>> np.poly([-1, 1, 1, 10])
array([ 1, -11,   9,  11, -10])

Здесь, массив возвращает коэффициенты соответствующие уравнению: $x^4 - 11x^3 + 9x^2 + 11x - 10$.Читать полностью »

Предисловие переводчика

И снова здравствуйте! Продолжаем наш цикл статей по переводу мана о numpy. Приятного чтения.

Операторы сравнения и тестирование значений

Булево сравнение может быть использовано для поэлементного сравнения массивов одинаковых длин. Возвращаемое значение это массив булевых True/False значений:

>>> a = np.array([1, 3, 0], float)
>>> b = np.array([0, 3, 2], float)
>>> a > b
array([ True, False, False], dtype=bool)
>>> a == b
array([False,  True, False], dtype=bool)
>>> a <= b
array([False,  True,  True], dtype=bool)

Читать полностью »

Здравствуйте, коллеги. Сегодня хотели поинтересоваться, насколько востребованной вам кажется слегка устаревшая книга "Bayesian Methods for Hackers", опубликованная в оригинале в 2015 году, но пока не переведенная на русский язык.

Вероятностное программирование и байесовский метод для хакеров - 1

Книга позиционируется как прикладная, максимально избавленная от математики и неустаревающая.

Под катом — немного сокращенный перевод обзора этой книги, выложенного автором на Github.
Поучаствуйте пожалуйста в голосовании
Читать полностью »

Предисловие переводчика

Продолжаем перевод статьи о numpy в python. Для тех кто не читал первую часть, сюда: Часть 1. А всем остальным — приятного чтения.

Другие пути создания массивов

Функция arange аналогична функции range, но возвращает массив:

>>> np.arange(5, dtype=float)
array([ 0.,  1.,  2.,  3.,  4.])
>>> np.arange(1, 6, 2, dtype=int)
array([1, 3, 5])

Функции zeros и ones создают новые массивы с установленной размерностью, заполненные этими значениями. Это, наверное, самые простые в использовании функции для создания массивов:

>>> np.ones((2,3), dtype=float)
array([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>> np.zeros(7, dtype=int)
array([0, 0, 0, 0, 0, 0, 0])

Читать полностью »

Анализ данных с использованием Python - 1

Язык программирования Python в последнее время все чаще используется для анализа данных, как в науке, так и коммерческой сфере. Этому способствует простота языка, а также большое разнообразие открытых библиотек.

В этой статье разберем простой пример исследования и классификации данных с использованием некоторых библиотек на Python. Для исследования, нам понадобится выбрать интересующий нас набор данных (DataSet). Разнообразные наборы Dataset'ы можно скачать с сайта. DataSet обычно представляет собой файл с таблицей в формате JSON или CSV. Для демонстрации возможностей исследуем простой набор данных с информацией о наблюдениях НЛО. Наша цель будет не получить исчерпывающие ответы на главный вопрос жизни, вселенной и всего такого, а показать простоту обработки достаточно большого объема данных средствами Python. Собственно, на месте НЛО могла быть любая таблица.

Читать полностью »

Предисловие переводчика


Доброго времени суток. Запускаю цикл статей, которые являются переводом небольшого мана по numpy, ссылочка. Приятного чтения.

Введение

NumPy это open-source модуль для python, который предоставляет общие математические и числовые операции в виде пре-скомпилированных, быстрых функций. Они объединяются в высокоуровневые пакеты. Они обеспечивают функционал, который можно сравнить с функционалом MatLab. NumPy (Numeric Python) предоставляет базовые методы для манипуляции с большими массивами и матрицами. SciPy (Scientific Python) расширяет функционал numpy огромной коллекцией полезных алгоритмов, таких как минимизация, преобразование Фурье, регрессия, и другие прикладные математические техники.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js