Если ваш NumPy-массив слишком велик для того, чтобы полностью поместиться в оперативной памяти, его можно обработать, разбив на фрагменты. Сделать это можно либо в прозрачном режиме, либо явно, загружая эти фрагменты с диска по одному.
В такой ситуации можно прибегнуть к двум классам инструментов:
- Метод NumPy
memmap()
, прозрачный механизм, который позволяет воспринимать файл, расположенный на диске, так, будто он весь находится в памяти. - Похожие друг на друга форматы хранения данных Zarr и HDF5, которые позволяют, по необходимости, загружать с диска и сохранять на диск сжатые фрагменты массива.
У каждого из этих методов есть свои сильные и слабые стороны.
Материал, перевод которого мы сегодня публикуем, посвящён разбору особенностей этих методов работы с данными, и рассказу о том, в каких ситуациях они могут пригодиться. В частности, особое внимание будет уделено форматам данных, которые оптимизированы для выполнения вычислений и необязательно рассчитаны на передачу этих данных другим программистам.
Читать полностью »