Рубрика «numba»
Ускоряем анализ данных в 170 000 раз с помощью Python
2024-02-01 в 11:01, admin, рубрики: numba, python, оптимизация, перевод, ускорение кодаКак можно ускорить Python сегодня
2022-12-31 в 10:00, admin, рубрики: cupy, gpgpu, gpu, intel, numba, python, ruvds_перевод, scikit-learn, Блог компании RUVDS.com, многопоточность, ускорители вычисленийPython не перестаёт удивлять многих своей гибкостью и эффективностью. Лично я являюсь приверженцем С и Fortran, а также серьёзно увлекаюсь C++, поскольку эти языки позволяют добиться высокого быстродействия. Python тоже предлагает такие возможности, но дополнительно выделяется удобством, за что я его и люблю.
Этот инструмент способен обеспечивать хорошее быстродействие, поскольку имеет в арсенале ключевые оптимизированные библиотеки, а также возможность динамической компиляции основного кода, который предварительно не компилировался. Однако скорость Python значительно падает, когда дело доходит до обработки крупных датасетов или более сложных алгоритмов. В текущей статье мы разберём:
- Почему столь важно думать о «будущем разнородных вычислений».
- Две ключевых сложности, которые необходимо преодолеть в открытом решении.
- Параллельное выполнение задач для более эффективного задействования CPU.
- Использование ускорителя для дополнительного повышения быстродействия.
Один только третий пункт позволил увеличить быстродействие в 12 раз притом, что четвёртый позволяет добиться ещё большего за счёт ускорителя. Эти простые техники могут оказаться бесценными при работе с Python, когда требуется добиться дополнительного ускорения программы. Описанные здесь приёмы позволяют нам уверенно продвигаться вперёд без длительного ожидания результатов.Читать полностью »
Python (+numba) быстрее си — серьёзно?! Часть 2. Практика
2020-01-15 в 22:38, admin, рубрики: numba, python, быстродействие, ПрограммированиеЭто вторая часть статьи про numba. В первой было историческое введение и краткая инструкция по эксплуатации numba. Здесь я привожу слегка модифицированный код задачи из статьи про хаскелл «Быстрее, чем C++; медленнее, чем PHP» (там сравнивается производительность реализаций одного алгоритма на разных языках/компиляторах) с более детальными бенчмарками, графиками и пояснениями. Сразу оговорюсь, что я видел статью Ох уж этот медленный C/C++ и, скорее всего, если внести в код на си эти правки, картина несколько изменится, но даже в этом случае то, что питон способен превысить скорость си хотя бы в таком варианте, само по себе является примечательным.
Python (+numba) быстрее си — серьёзно?! Часть 1. Теория
2020-01-15 в 22:38, admin, рубрики: numba, python, быстродействие, ПрограммированиеДавно собирался написать статью о numba и о сравнении её быстродействия с си. Статья про хаскелл «Быстрее, чем C++; медленнее, чем PHP» подтолкнула к действию. В комментариях к этой статье упомянули о библиотеке numba и о том, что она магическим образом может приблизить скорость выполнения кода на питоне к скорости на си. В данной статье — чуть более подробный разбор этой ситуации (часть 2) и рекомендации по «приручению» numba (часть 1).
Сравнение производительности GPU-расчетов на Python и C
2016-12-11 в 8:05, admin, рубрики: C, CUDA, gpgpu, numba, pycuda, python, производительность
Python обладает рядом привлекательных преимуществ к которым относится простота реализации программных решений, наглядность и лаконичность кода, наличие большого числа библиотек и многочисленного активного комьюнити. В то же время, известная всем медлительность питона часто ограничивает его применимость для “тяжелых” вычислений. Для ряда задач можно добиться существенного ускорения расчетов путем использования технологии CUDA для параллельных вычислений на GPU. Цель этого небольшого исследования — анализ возможностей эффективного использования python для расчетов на GPU и сравнение производительности различных python-решений с реализацией на C.
Читать полностью »