Приветствую вас, коллеги. Оказывается, не все компьютерное зрение сегодня делается с использованием нейронных сетей. Хотя многие стартапы и заявляют, что у них дип лернинг везде, спешу вас разочаровать, они просто хотят хайпануть немножечко. Рассмотрим, например, задачу сегментации. В нашем слаке развернулась целая драма. Одна богатая и высокотехнологичная селфи-компания собрала датасет для сегментации селфи с помощью нейросетей (а это непростое и недешевое занятие). А другая, более бедная и не очень развитая решила, что можно подкупить людей, размечающих фотки, и спполучить базу. В общем, страсти в этих ваших Интернетах еще те. Недавно я наткнулся на статью, где без всяких нейросетей на устройстве делают очень даже хорошую сегментацию. Для сегментации от пользователя требуется дать алгоритму несколько подсказок, но с помощью dlib и opencv такие подсказки легко автоматизируются. В качестве бонуса мы так же сгладим вырезанное лицо и перенесем на какого-нибудь рандомного человека, тем самым поймем, как работают маски во всех этих снапчятах и маскарадах. В общем, классика еще жива, и если вы хотите немного окунуться в классическое компьютерное зрение на питоне, то добро пожаловать под кат.