Идеи философов о человеческом разуме привели к вере в то, что рациональное мышление можно описать, пользуясь алгебраическими или логическими механизмами. Позже, с появлением электронных приборов, компьютеров и закона Мура, человечество попало в состояние постоянного ожидания того, что вот ещё немного — и появится машина, разум которой сравним с человеческим. Некоторые объявляли разумные машины спасителями человечества, а некоторые видели в этих машинах источник великого бедствия, так как полагали, что появление на Земле второй разумной сущности приведёт к уничтожению первой, то есть — людей.
Читать полностью »
Рубрика «neuroscience»
Нейроморфные вычисления и их успехи
2021-09-14 в 13:00, admin, рубрики: artifical intelligence, deep learning, neuromorphic, neuroscience, ruvds_перевод, Блог компании RUVDS.com, будущее здесь, высокая производительность, искусственный интеллект, мозг, нейроморфные вычисленияПростой классификатор P300 на открытых данных
2019-12-14 в 16:57, admin, рубрики: BCI, EEG, Impulse Neiry, machine learning, Neiry, neuroscience, P300, python, машинное обучение, мозг, нейрофизиология, открытые данные, ээгМой коллега Рафаэль Григорян eegdude недавно написал статью о том, зачем человечеству потребовалась ЭЭГ и какие значимые явления могут быть зарегистрированы в ней. Сегодня в продолжение темы нейроинтерфейсов мы используем один из открытых датасетов, записанных на игре, использующей механику P300, чтобы визуализировать сигнал ЭЭГ, посмотреть структуру вызванных потеницалов, построить основные классификаторы, оценить качество, с которым мы можем предсказать наличие такого вызыванного потенциала.
Напомню, что P300 — это вызванный потенциал (ВП), специфический отклик мозга связанный с принятием решений и и различением стимулов (что он из себя представляет мы увидим ниже). Обычно он используется для построения современных BCI.
Для того, чтобы заняться классификацией ЭЭГ, можно позвать друзей, написать игру про Енотов и Демонов в VR, записать собственные реакции и написать научную статью (об этом я расскажу как-нибудь в другой раз), но по счастью, учёные со всего мира уже провели некоторые эксперименты за нас и осталось только скачать данные.
Разбор способа построения нейроинтерфейса на P300 с пошаговым кодом и визуализациями, а также ссылку на репозиторий можно найти под катом.
Что такое ЭЭГ и зачем она нужна
2019-12-07 в 17:51, admin, рубрики: BCI, EEG, Mind-controlled VR Games, neural networks, neuroscience, P300, машинное обучение, мозг, Научно-популярноеУченые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука, узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.
Вести с полей больших и умных данных: программа конференции SmartData 2017 Piter
2017-10-06 в 11:07, admin, рубрики: api, artificial intelligence, big data, big data analytics, catboost, Conference, data mining, deep learning, machine learning, neural networks, neural networks and deep learning, neuroscience, smart data, Анализ и проектирование систем, Блог компании JUG.ru Group, машинное обучениеВ 2016/2017 годах мы обнаружили, что на каждой из наших конференций есть 1-3 доклада о Big Data, нейросетях, искусственном интеллекте или машинном обучении. Стало понятно, что под эту тему можно собрать хорошую конференцию, о чём я сегодня вам и расскажу.
Вкусно: мы решили собрать под одной крышей учёных, инженеров-практиков, архитекторов и сделать упор на технологии — казалось бы, обычное дело, но нет.
Сложно: копнув глубже, можно увидеть, что отдельными вопросами все занимаются не сообща, а врозь.
Учёные строят нейросети в теории, архитекторы делают распределённые системы для корпораций с целью обработки огромных потоков данных в реальном времени, без конечной цели унифицировать к ним доступ, инженеры-практики пишут под это всё софт для сугубо узких задач, которые потом нереально перенести на что-то другое. В общем, каждый копает свою грядку и не лезет к соседу… Так? Да нет же!
На деле: Все занимаются частью общего. Как сама Smart Data (а «умные данные» — это очень узкий перевод) по природе своей, так и те, кто с ней работает, по сути, делают распределённую сеть различных наработок, которые могут создавать порой неожиданные сочетания. Это и формирует фундамент Умных данных в своей красоте и практической значимости.
Итак, что это за кусочки паззла и кто их создает, можно будет посмотреть и даже обсудить с создателями на конференции SmartData 2017 Piter 21 октября 2017. Подробности под катом.
Дальше будет много букв, мы же за большие и умные данные, хотя исторически анонс подразумевает быстрый и ёмкий текст, краткий и точный, как выстрел снайпера в ясную летнюю ночь.
Читать полностью »
Заметки с MBC Symposium: применение deep learning в моделировании мозга
2016-04-23 в 7:02, admin, рубрики: computer vision, deep learning, neuroscience, машинное обучение, обработка изображенийПосетил Стенфордский симпозиум, посвященный пересечению deep learning и neurosciencе, получил массу удовольствия.
Рассказываю про интересное — например, доклад Дэна Яминса о применении нейросетей для моделирования работы зрительной коры головного мозга.