Рубрика «neural networks and deep learning»

В 2016/2017 годах мы обнаружили, что на каждой из наших конференций есть 1-3 доклада о Big Data, нейросетях, искусственном интеллекте или машинном обучении. Стало понятно, что под эту тему можно собрать хорошую конференцию, о чём я сегодня вам и расскажу.

Вкусно: мы решили собрать под одной крышей учёных, инженеров-практиков, архитекторов и сделать упор на технологии — казалось бы, обычное дело, но нет.

Сложно: копнув глубже, можно увидеть, что отдельными вопросами все занимаются не сообща, а врозь.

Учёные строят нейросети в теории, архитекторы делают распределённые системы для корпораций с целью обработки огромных потоков данных в реальном времени, без конечной цели унифицировать к ним доступ, инженеры-практики пишут под это всё софт для сугубо узких задач, которые потом нереально перенести на что-то другое. В общем, каждый копает свою грядку и не лезет к соседу… Так? Да нет же!

На деле: Все занимаются частью общего. Как сама Smart Data (а «умные данные» — это очень узкий перевод) по природе своей, так и те, кто с ней работает, по сути, делают распределённую сеть различных наработок, которые могут создавать порой неожиданные сочетания. Это и формирует фундамент Умных данных в своей красоте и практической значимости.

Итак, что это за кусочки паззла и кто их создает, можно будет посмотреть и даже обсудить с создателями на конференции SmartData 2017 Piter 21 октября 2017. Подробности под катом.

image

Дальше будет много букв, мы же за большие и умные данные, хотя исторически анонс подразумевает быстрый и ёмкий текст, краткий и точный, как выстрел снайпера в ясную летнюю ночь.
Читать полностью »

Всем привет. В этой статье я расскажу вам о нейронных сетях в кратком виде. Мы рассмотрим строение искусственных нейронов, многослойные сети, метод обратного распространения ошибки.

image

Нейронные сети решают огромное количество задач. Самые основные — классификация и прогнозирование.

Например, мы хотим узнать количество баллов за тест, основываясь на том, сколько часов мы учились и спали. Такая задача будет относится к прогнозированию, так как мы предсказываем нашу оценку. А ещё — это будет называться контролируемой регрессией.

Если бы мы хотели узнать «буквенную оценку» за тест — это бы называлось классификацией.

Строение нейронных сетей

Любая искусственная нейронная сеть состоит из слоёв. Первый слой — входной, последний — выходной.

Во входном слое расположены 'нейроны', которые принимают сигнал, но не обрабатывают его. Количество 'нейронов' в этом слое зависит от количества данных. Например, мы подаём на нашу сеть запах цветка и яркость его цвета. В таком случае будет два входных нейрона.
Нейронные сети. Краткое введение - 2
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js