Рубрика «нейтронные звёзды»
Насколько быстро на самом деле действует гравитация?
2022-11-01 в 11:37, admin, рубрики: астрономия, Блог компании FirstVDS, гравитация, космос, Научно-популярное, нейтронные звёзды, пульсары, физика, чёрные дырыНа протяжении сотен лет, начиная со времен Ньютона и Лагранжа, ученые предлагали множество ответов на вопрос о точной скорости гравитации. Два основных предположения, вокруг которых крутились дебаты, состояли в том, что гравитация или бесконечно быстра и пронизывает всё пространство, или распространяется со скоростью света.
Колыбель для страпельки
2021-02-23 в 6:40, admin, рубрики: астрономия, Научно-популярное, нейтронные звёзды, странная материя, страпелька, физикаКак известно, из-за продолжающейся эпидемии затягивается ремонт и откладывается запуск Большого Адронного Коллайдера. Еще не так давно, в середине 2010-х, работа этого грандиозного ускорителя частиц позволившего в 2012 году обнаружить бозон Хиггса и достроить Стандартную модель, могла сравниться по масштабу только с открытием гравитационных волнЧитать полностью »
Как я публиковал научную статью в Nature
2019-12-13 в 14:46, admin, рубрики: ligo, publish or perish, астрономия, гравитационные волны, квантовая физика, квантовые технологии, лазеры, Научно-популярное, нейтронные звёзды, общая теория относительности, сжатый свет, физикаДва года назад, листая старую тетрадь с вычислениями, я наткнулся на явную ошибку в одном уравнении. Находясь в совершенном ужасе — это уравнение-то было опубликовано в научном журнале месяцем ранее, — бросил все дела и стал срочно переделывать расчет. И ошибка никуда не делась.
Как баг превратился в фичу, о научном прогрессе и всех приключениях в попытках опубликоваться в Nature. Спойлер: почти получилось.
Как квантовая запутанность поможет в детектировании гравитационных волн
2019-09-03 в 9:10, admin, рубрики: ligo, астрономия, будущее здесь, гравитационные волны, интерферометр, квантовая запутанность, квантовые технологии, лазер, лазеры, Научно-популярное, нейтронные звёзды, сжатый свет, физика, чёрные дыры, эйнштейнМы недавно сделали эксперимент по проверке нового подхода к снижению квантовых шумов в LIGO и написали статью про это, смотрите на arXiv: «Demonstration of interferometer enhancement through EPR entanglement». А тут я расскажу, какие такие квантовые шумы в LIGO, как их можно снизить, и при чем тут квантовая запутанность и сжатый свет.
Einstein Telescope: детектор гравитационных волн нового поколения
2018-12-02 в 15:11, admin, рубрики: AdvancedLIGO, Einstein Telescope, ligo, астрономия, гравитационные волны, детектор гравитационных волн, лазеры, Научно-популярное, нейтронные звёзды, ото, физика, чёрные дырыДлиннее, мощнее, точнее — Европа собирается построить гравитационно-волновой детектор нового поколения под названием Einstein Telescope.
Einstein Telescope концепт-арт, credit: www.gwoptics.org
Детектор LIGO только-только начал работать пару лет назад, и даже еще не достиг запланированной чувствительности. Однако ученым очевидно, что чувствительности LIGO будет недостаточно для настоящей гравитационно-волновой астрономии.
Я расскажу о том, что ограничивает LIGO, и как подземный криогенный детектор в 2,5 раза длиннее LIGO сможет обойти эти ограничения.
Как LIGO может увидеть гравитационные волны, если в ОТО свет растягивается вместе с пространством?
2018-10-31 в 16:21, admin, рубрики: ligo, Virgo, астрономия, гравитационные волны, лазеры, Научно-популярное, нейтронные звёзды, ото, физика, чёрные дырыКак же LIGO может регистрировать гравитационные волны, если они растягивают свет вместе с пространством между зеркалами?
Этот вопрос непременно возникает, когда заходит разговор о детектировании гравитационных волн (ГВ). Обычно аргумент приводят такой: мы знаем, что есть гравитационное красное смещение, т.е. гравитация растягивает длины волн. Разумно предположить, что в LIGO свет тоже будет растягиваться, и длины волн, которые мы используем как «линейку» для измерения расстояния между зеркалами, растянутся в той же мере, что и само расстояние. Как же можно тогда пользоваться интерферометром для измерения гравитационных волн?
Представим возможные ответы на него:
- ГВ не влияют на свет, так что вопрос не имеет смысла.
- ГВ растягивают длину волны света, но очень слабо, так что мы не замечаем.
- Это не имеет значения, принцип детектирования не чувствителен к длине волны.
- Детекторы на самом деле и не работают.
Спросите Итана: как вращение влияет на форму пульсаров?
2018-04-24 в 6:00, admin, рубрики: астрономия, магнетары, Научно-популярное, нейтронные звёзды, пульсары, спросите итана, физика, чёрные дыры
Нейтронная звезда – одна из наиболее плотных форм материи Вселенной, но её массе есть верхний предел. Если его превзойти, нейтронная звезда схлопнется в чёрную дыру
Во Вселенной есть мало неподвижных объектов; практически все известные нам тела вращаются. Каждая луна, планета, звезда из известных нам, вращается вокруг своей оси, поэтому в нашей физической реальности не бывает идеальных сфер. Объект, находящийся в гидростатическом равновесии, при вращении раздувается по экватору и сжимается с полюсов. Наша Земля, благодаря одному обороту в сутки, вдоль экваториальной оси на 42 км длиннее, чем по полярной, а существуют объекты, вращающиеся гораздо быстрее. А что насчёт наиболее быстро вращающихся объектов? Наш читатель спрашивает:
Некоторые пульсары вращаются удивительно быстро. Насколько сильно это искажает их форму, и не сбрасывают ли они из-за этого материю – или их гравитация её удерживает?
Существуют ограничения на скорость вращения объектов, и хотя пульсары исключением не являются, некоторые из них можно назвать воистину исключительными.
Читать полностью »
Слияние нейтронных звёзд поставило крест на альтернативах тёмной материи и тёмной энергии
2018-03-24 в 9:00, admin, рубрики: астрономия, гамма-излучение, гравитационные волны, Научно-популярное, нейтронные звёзды, скорость света, тёмная материя, тёмная энергия, теория гравитации, физика
В последние моменты слияния две нейтронные звезды не просто испускают гравитационные волны – происходит взрыв катастрофической мощности, отзывающийся по всему электромагнитному спектру. Разница во времени прибытия между светом и гравитационными волнами позволяет нам многое узнать о Вселенной
Спросите астрофизика о величайшей загадке Вселенной на сегодня – и два наиболее частых ответа будут «тёмная материя» и «тёмная энергия». То, из чего состоит всё на нашей Земле, атомы, которые в свою очередь состоят из фундаментальных частиц, составляют лишь 5% бюджета космической энергии. И либо 95% энергии Вселенной содержится в двух этих формах, в форме тёмной материи и тёмной энергии, которые по сию пору не наблюдались напрямую, либо с нашим представлением о Вселенной что-то кардинально не так. Альтернативы этим теориям исследовали достаточно долго, и различные их варианты проводили к немного различным физическим последствиям. После того, как мы впервые пронаблюдали слияние нейтронных звёзд и приняли сигналы в виде гравитационных волн и света довольно широкого спектра, огромная часть этих альтернатив была отвергнута. Тёмная материя и тёмная энергия выдержали проверку экспериментом.
Читать полностью »
Спросите Итана: почему свет прибыл на 1,7 секунды позже гравитационных волн при слиянии нейтронных звёзд?
2018-03-22 в 7:00, admin, рубрики: астрономия, гамма-всплески, гравитационные волны, Научно-популярное, нейтронные звёзды, слияние нейтронных звёзд, спросите итана, физика
Слияние двух нейтронных звёзд в представлении художника. Искажения решётки пространства-времени изображают гравитационные волны, испущенные при столкновении, а узкие лучи – это джеты гамма-излучения, выстреливающие через несколько секунд после гравитационных волн (астрономы видят их как вспышки гамма-лучей)
17 августа, после путешествия длительностью в 130 млн лет, сигнал в виде гравитационных волн от двух нейтронных звёзд, двигавшихся навстречу друг другу по спирали на последних этапах слияния, прибыл на Землю. После столкновения поверхностей двух звёзд сигнал резко завершился, и наступила тишина. И хотя эти останки звёзд диаметром, возможно, всего в 20 км, двигались со скоростью порядка 30% от световой, сразу после столкновения мы не увидели ничего. И только 1,7 с спустя прибыл первый сигнал: свет в виде гамма-лучей. Откуда задержка? Отличный вопрос, заданный нашим читателем:
Давайте обсудим важность разницы в 1,7 с между временем прибытия гравитационных волн и вспышки гамма-лучей во время последнего события с нейтронными звёздами.
Давайте посмотрим, что мы увидели, и попробуем понять, откуда берётся эта задержка.
Читать полностью »