Рубрика «нейросети» - 31

Часть из 170 000 камер видеонаблюдения в Москве подключат к системе распознавания лиц. Власти признали успешным двухмесячный эксперимент с автоматическим распознаванием лиц, пола и возраста людей в реальном времени (технология NtechLab Ltd.) — и теперь собираются развернуть систему на весь город.

В Москве заработает система распознавания лиц через камеры видеонаблюдения - 1
Система распознавания лиц компании NtechLab. Фото: NtechLab

Сейчас сеть видеонаблюдения объединяет подъездные видеокамеры (95% подъездов жилых домов в столице), камеры на территории и в зданиях школ и детских садов, на станциях МЦК, стадионах, остановках общественного транспорта и автовокзалах, в парках, подземных переходах, сообщает официальный портал мэра и правительства Москвы.

«Внедрение видеоаналитики является мощным драйвером повышения эффективности как частных, так и городских систем видеонаблюдения. У жителей города появился дополнительный уровень защиты, — сказал руководитель Департамента информационных технологий Москвы Артём Ермолаев. — Разумеется, все эти возможности должны внедряться очень ответственно. Наш приоритет — баланс между конфиденциальностью и безопасностью, и мы придерживаемся строгой внутренней политики контроля, гарантирующей соблюдение прав граждан».
Читать полностью »

Prisma — приложение для оформления фотографий в стилистике определенных художников — стало одним из примеров резкой популярности на мировом рынке. Попутно «Призма» удостоилась как массе восхищенных похвал, так и ряду упреков: от вторичности разработки до краткосрочной популярности самого продукта. Алексей Моисеенков с начала и до сего дня — основной двигатель этого проекта. Далее — наш разговор с ним.

Бизнес-уроки

Ажиотаж прошел. Вы им правильно воспользовались? Может, есть обстоятельства, которые не позволили вам воспользоваться хайпом в достаточной мере?

Алексей Моисеенков: Секрета, как воспользоваться хайпом по максимуму, нет, но мы получили пользу в достаточной мере. Получили достаточно опыта. Наше использование хайпа было не в монетизации, а в опыте быстрого роста по всему миру. Одно из основных, что мы получили — опыт быстрой разработки и опыт оперативного общения с прессой.

Prisma никогда бы не осталась востребованной надолго. Стилизация фото — как мода. Ни мы, никто ничего не может сделать, чтобы хайп длился вечно. Денег и связей, наверное, мы могли бы извлечь больше, методов работы с аудиторией, конечно, можно было придумать ещё массу. Стоило бы активнее работать в Азии. Но это точно не известно, неясно, как бы эти шаги отразились на популярности «Призмы».
Читать полностью »

С развитием нейросетей им придумывают всё более разнообразные способы применения. С их помощью обучаются автопилоты Tesla, а распознавание лиц используется не только для обработки фотографий приложениями типа Prisma, но и в системах безопасности. Искусственный интеллект учат диагностировать болезни. В конце концов, с его помощью даже выигрывают выборы.

Но есть одна сфера, которая традиционно считалась принадлежащей исключительно человеку — творчество. Однако и это утверждение начинают ставить под сомнение. Ли Седоль, проигравший AlphaGo, признался: «Поражение заставило меня засомневаться в человеческой креативности. Когда я увидел, как играет AlphaGo, то усомнился в том, насколько хорошо играю сам». Поэтому в сегодняшнем посте давайте поговорим о том, способны ли роботы ступить на территорию искусства, в пространство креативности, а значит эмоций и восприятия.

«Человек» искусства: способен ли искусственный интеллект творить? - 1Читать полностью »

Мы регулярно проводим внешние хакатоны на разные темы. Но этим летом мы решили дать возможность проявить себя и сотрудникам – ведь наверняка им хочется порешать задачки на имеющихся данных. Что получилось у коллег в СберТехе — рассказывает samorlov, главный руководитель разработки в Отделе разработки лабораторного кластера супермассивов.
Три идеи, как повысить эффективность разработки: итоги хакатона по Machine Learning в СберТехе - 1
Читать полностью »

Ученые из Center of Clinical Data Science станут первыми, кто сможет обрабатывать данные с помощью суперкомпьютера для глубокого обучения DGX-1 на базе восьми графических процессоров Tesla V100. V100 показывают результат в 960 терафлопс при вычислениях FP16 благодаря технологии Volta Tensor Core.

Первый суперкомпьютер DGX-1 на базе Tesla V100 применят в медицине - 1Читать полностью »

image

Недавно моя тётя разослала своим коллегам емейлы с темой «задачка по математике! Какой правильный ответ?» В письме была обманчиво простая головоломка:

1 + 4 = 5
2 + 5 = 12
3 + 6 = 21
8 + 11 =?

Для неё решение был очевидным. Но её коллеги решили, что правильным было их решение – не совпавшее с её решением. Проблема была с одним из их ответов, или с самой головоломкой?

Моя тётя и её коллеги наткнулись на фундаментальную проблему машинного обучения, дисциплины, изучающей обучающиеся компьютеры. Практически всё обучение, которое мы ждём от компьютеров – и которым занимаемся сами – состоит в сокращении информации до основных закономерностей, на основании которых можно делать выводы о чём-то неизвестном. И её загадка была такой же.
Читать полностью »

Наслаждаясь созданием моделей в Питоне на замечательных Deep Learning фреймворках типа Keras или Lasagne, время от времени хочется посмотреть, а что там интересного появилось для C++ разработчиков, помимо мейнстримовых TensorFlow и Caffe. Я решил поближе посмотреть на трех представителей: tiny-dnn, Apache.SINGA и OpenNN. Краткое описание опыта установки, сборки и использования под Windows Вы и найдете под катом.

Читать полностью »

С момента описания первого искусственного нейрона Уорреном Мак-Каллоком и Уолтером Питтсом прошло более пятидесяти лет. С тех пор многое изменилось, и сегодня нейросетевые алгоритмы применяются повсеместно. И хотя нейронные сети способны на многое, исследователи при работе с ними сталкиваются с рядом трудностей: от переобучения до проблемы «черного ящика».

Если термины «катастрофическая забывчивость» и «регуляризация весов» вам пока ни о чем не говорят, читайте дальше: попробуем разобраться во всем по порядку.

Что может и чего не может нейросеть: пятиминутный гид для новичков - 1Читать полностью »

ИИ научили распознавать сарказм в Twitter по смайликам - 1
Создатели «Симпсонов», как и во многих других случаях, предсказали появление этого изобретения задолго до его создания реальными учеными

Некоторые действия человека остаются непостижимыми для компьютера. Но часть поведенческих особенностей компьютерные системы научились распознавать, и весьма неплохо. Например, когнитивная система IBM Watson может определять эмоциональный тон письма. Научить компьютер определять эмоции довольно сложно, но возможно. На днях была представлена еще одна система, которая способна понимать сарказм. В данном случае речь идет о сарказме в сообщениях из Twitter. Разработчики этой системы утверждают, что она может определять эмоциональное наполнение сообщений различных пользователей лучше, чем в большинстве случаев это делает сам человек.

Зачем все это нужно? В первую очередь, для того, чтобы компании могли определять отношение пользователей социальных сетей к своим продуктам и себе самим. Сейчас для этого используются ключевые слова и некоторые другие методы. Но если компьютер сможет определять эмоции людей, отправляющих сообщений, то это может значительно улучшить эффективность работы компаний. Кроме того, если машины будут уверенно определять эмоции людей, это поможет пользователям понимать, какие эмоции использовал другой человек, который отправил, например, сообщение электронной почты.
Читать полностью »

Как ввести в заблуждение компьютер: коварная наука обмана искусственного интеллекта - 1

В начале XX века Вильгельм фон Остин, немецкий тренер лошадей и математик, объявил миру, что научил лошадь считать. Годами фон Остин путешествовал по Германии с демонстрацией этого феномена. Он просил свою лошадь по кличке Умный Ганс (породы орловский рысак), подсчитывать результаты простых уравнений. Ганс давал ответ, топая копытом. Два плюс два? Четыре удара.

Но учёные не верили в то, что Ганс был таким умным, как заявлял фон Остин. Психолог Карл Штумпф провёл тщательное расследование, которое окрестили «Гансовским комитетом». Он обнаружил, что Умный Ганс не решает уравнения, а реагирует на визуальные сигналы. Ганс выстукивал копытом, пока не добирался до правильного ответа, после чего его тренер и восторженная толпа разражались криками. А затем он просто останавливался. Когда он не видел этих реакций, он так и продолжал стучать.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js