Рубрика «нейросети» - 30

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 1

Новый год все ближе, скоро закончатся 2010-е годы, подарившие миру нашумевший ренессанс нейросетей. Мне не давала покоя и лишала сна простая мысль: «Как можно ретроспективно прикинуть скорость развития нейросетей?» Ибо «Тот, кто знает прошлое — тот знает и будущее». Как быстро «взлетали» разные алгоритмы? Как вообще можно оценить скорость прогресса в этой области и прикинуть скорость прогресса в следующем десятилетии? 

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 2

Понятно, что можно примерно посчитать количество статей по разным областям. Метод не идеальный, нужно учитывать подобласти, но в целом можно пробовать. Дарю идею, по Google Scholar (BatchNorm) это вполне реально! Можно считать новые датасеты, можно новые курсы. Ваш же покорный слуга, перебрав несколько вариантов, остановился на Google Trends (BatchNorm)

Мы с коллегами взяли запросы основных технологий ML/DL, например, Batch Normalization, как на картинке выше, точкой добавили дату публикации статьи и получили вполне себе график взлета популярности темы. Но не у всех тем путь усыпан розами взлет такой явный и красивый, как у батчнорма. Некоторые термины, например регуляризацию или skip connections, вообще не получилось построить из-за зашумленности данных. Но в целом тренды собрать удалось.

Кому интересно, что получилось — добро пожаловать под кат!
Читать полностью »

Facebook удалил сотни аккаунтов со сгенерированными ИИ аватарками - 1

Facebook отчитался об удалении более чем 900 учетных записей, страниц и групп на своей платформе и в Instagram, с помощью которых в сети велась дезинформационная кампания. Как говорится в отчёте Facebook, для этого использовали фальшивые учетные записи с аватарками, сгенерироваными нейросетями. Исследователи Facebook заявили, что это было первое массивное использование искусственного интеллекта для поддержки дезинформационной кампании в социальных сетях. Читать полностью »

image

Журналисты The Guardian, которая одной из первых раскрыла использование данных десятков миллионов пользователей Facebook британской компанией Cambridge Analytica, не могли добиться интервью с главой соцсети Марком Цукербергом. В итоге они пообщались с нейросетью Цукербот, которую обучили отвечать на вопросы с помощью интервью и публичных выступлений главы Facebook.

Алгоритм создала студия Botnik. Цукербота обучали с применением интервью, речей и публикаций в блогах Цукерберга за последние три года. В итоге нейросеть может оперировать 200 тысячами слов. The Guardian готовила вопросы для интервью совместно с Observer. Читать полностью »

Мы часто рассказываем о технологиях и библиотеках, которые зародились и сформировались в Яндексе. На самом деле мы ничуть не реже применяем и развиваем сторонние решения.

Сегодня я расскажу сообществу Хабра об одном из таких примеров. Вы узнаете, зачем мы научили нейросеть BERT находить опечатки в заголовках новостей, а не воспользовались готовой моделью, почему нельзя взять и запустить BERT на нескольких видеокартах и как мы использовали ключевую особенность этой технологии — механизм attention.

Как Яндекс научил искусственный интеллект находить ошибки в новостях - 1

Читать полностью »

image

Nvidia создала AI-систему DIB-R (differentiable interpolation-based renderer), которая построена на основе ML-фреймворка PyTorch. Система способна преобразовывать двухмерные изображения в трехмерные объекты.

DIB-R обрабатывает картинку, а затем преобразует ее в высокоточную 3D-модель. Учитываются формы, текстура, цвета и освещение объекта. При этом задействована архитектура кодера-декодера, типа нейронной сети, которая преобразует входные данные в вектор, используемый для прогнозирования конкретной информации.

Вся работа занимает менее чем 100 миллисекунд. Читать полностью »

Нейросеть научили распознавать речь по губам при помощи алгоритма распознавания записи голоса - 1
Hal 9000 прекрасно читал по губам, правда, по-английски

Нейросети сейчас умеют многое, и постепенно их обучают все большему количеству умений. На днях стало известно о том, что объединенная команда исследователей из США и Китая смогла обучить нейросеть распознавать речь по губам с высокой степенью точности.

Добиться этого удалось благодаря дополнительному элементу — алгоритму распознавания речи по аудиозаписям. Далее алгоритм использовался в качестве обучающей системы уже для второго алгоритма, который распознавал речь по видеозаписям.
Читать полностью »

image

Промышленная разработка программных систем требует большого внимания к отказоустойчивости конечного продукта, а также быстрого реагирования на отказы и сбои, если они все-таки случаются. Мониторинг, конечно же, помогает реагировать на отказы и сбои эффективнее и быстрее, но недостаточно. Во-первых, очень сложно уследить за большим количеством серверов – необходимо большое количество людей. Во-вторых, нужно хорошо понимать, как устроено приложение, чтобы прогнозировать его состояние. Следовательно, нужно много людей, хорошо понимающих разрабатываемые нами системы, их показатели и особенности. Предположим, даже если найти достаточное количество людей, желающих заниматься этим, требуется ещё немало времени, чтобы их обучить.

Что же делать? Здесь нам на помощь спешит искусственный интеллект. Речь в статье пойдет о предиктивном обслуживании (predictive maintenance). Этот подход активно набирает популярность. Написано большое количество статей, в том числе и на Хабре. Крупные компании вовсю используют такой подход для поддержки работоспособности своих серверов. Изучив большое количество статьей, мы решили попробовать применить этот подход. Что из этого вышло?

Читать полностью »

Нейросеть помогла ученым найти геоглиф перуанских индейцев - 1
Иллюстрация: Yamagata University

Японские ученые из Университета Ямагато нашли новый геоглиф на плато Наска в Перу, использовав нейросеть на платформе IBM Watson Machine Learning. Университет Ямагато сообщил об открытии в пресс-релизе 15 ноября.

Геоглифы плато Наска — гигантские изображения людей, птиц, животных растений и геометрических фигур на юге Перу. Считается, что геоглифы Наски были созданы коренными жителями Южной Америки с V века до н.э. по V век н.э. Мнения об их назначении расходятся: некоторые предполагают что геоглифы играют роль указателей, другие — что у них есть обрядовая роль. При создании геоглифов местные жители стирали верхние темные слои камня, под которым был белый песок.

Ученые Университета Ямагато под началом профессора Макато Сакая ищут геоглифы Наски с 2018 года. За год с лишним они обнаружили 142 геоглифа, среди которых были фигуры людей, рыбы, треугольники, линии и т.д. В своих поисках они сочетали наблюдения с воздуха с работой «в полях». Для расширения своего инструментария ученые прибегли к помощи IBM.
Читать полностью »

ИИ на отечественном железе

Рассказываем о том, как мы портировали свой фреймворк для нейронных сетей и систему распознавания лиц на российские процессоры Эльбрус.

image

Это была интересная задача, весной 2019 года мы рассказывали об этом в офисе Яндекса на большом митапе про Эльбрус, теперь делимся с Хабром.
Читать полностью »

Всем привет! В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.

Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.

DeepPavlov для разработчиков: #2 настройка и деплоймент - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js