Рубрика «нейросети» - 26

Первую часть статьи об основах NLP можно прочитать здесь. А сегодня мы поговорим об одной из самых популярных задач NLP – извлечении именованных сущностей (Named-entity recognition, NER) – и разберем подробно архитектуры решений этой задачи.

image
Читать полностью »

После длинных выходных возвращаемся с новым дайджестом. В нем новинки I/O и Build, PWA, Flutter и React Native, ограничения и переработки, UX и анимации.

Дайджест интересных материалов для мобильного разработчика #297 (6 — 12 мая) - 1Читать полностью »

Исследователи Массачусетского Технологического Института (MIT) предположили, что современные нейросети можно уменьшить до десяти раз, не потеряв в точности предсказаний. Скорость и легкость обучения таких сетей также может быть значительно выше. При этом тренировать и обеспечивать данными их смогут даже программисты-одиночки, а не только технологические гиганты с GPU-серверами и огромными датасетами.
Читать полностью »

Здравствуйте. Меня зовут Ибадов Илькин, я студент Уральского федерального университета.

В данной статье я хочу рассказать о своем опыте автоматизированного решения капчи компании «Google» — «reCAPTCHA». Хотелось бы заранее предупредить читателя о том, что на момент написания статьи прототип работает не так эффективно, как может показаться из заголовка, однако, результат демонстрирует, что реализуемый подход способен решать поставленную задачу.
Читать полностью »

Заметил, что у Хабра есть интерес к теме улучшения графики в старых играх.

Я как раз сделал мод графики для первой готики.

А недавно, решил схожим методом улучшить графику в любимом с детства мультфильме — "Тайна третьей планеты".

Тут кадры-сравнения.

А ниже результат:

Расскажите, стоит ли этим заниматься. Надо ли это кому-то? Или классику лучше не трогать?
Читать полностью »

Привет! У нас прошла конференция по разработке технической документации – ProКонтент 2019. Мне довелось изнутри посмотреть на процесс рождения конференции и даже выступить с пятиминутным мини-докладом. Не претендуя на объективность, очень кратко расскажу про доклады, которые мне больше всего понравились.
Читать полностью »

Индустрия сконцентрировалась на ускорении перемножений матриц, однако улучшение алгоритма поиска может привести к более серьёзному повышению быстродействия

Ускоряем работу нейросетей с помощью хеширования - 1

В последние годы компьютерная индустрия была занята, пытаясь ускорить вычисления, требуемые для искусственных нейросетей – как для обучения, так и для получения выводов её работы. В частности, довольно много усилий было положено на разработку специального железа, на котором можно выполнять эти вычисления. В Google разработали Tensor Processing Unit, или TPU, впервые представленный публике в 2016-м. Позже Nvidia представила V100 Graphics Processing Unit, описывая его, как чип, специально разработанный для обучения и использования ИИ, а также для других высокопроизводительных вычислительных нужд. Полно и иных стартапов, концентрирующихся на других типах аппаратных ускорителей.
Читать полностью »

Генеративно-состязательные сети (ГСС) [Generative Adversarial Networks, GAN] – обладающий интересными возможностями класс глубоких генеративных моделей. Их основная идея – обучение двух нейросетей, генератора, который обучается синтезу данных (к примеру, изображений), и дискриминатора, обучающегося тому, как отличать реальные данных от тех, что синтезировал генератор. Этот подход успешно использовался для высококачественного синтеза изображений, улучшения сжатия изображений, и прочего.
Читать полностью »

Для тех, кому лень читать всё: предлагается опровержение семи популярных мифов, которые в области исследований машинного обучения часто считаются истинными, по состоянию на февраль 2019. Данная статья доступна на сайте ArXiv в виде pdf [на английском языке].

Миф 1: TensorFlow – это библиотека для работы с тензорами.
Миф 2: Базы данных изображений отражают реальные фотографии, встречающиеся в природе.
Миф 3: Исследователи МО не используют проверочные наборы для испытаний.
Миф 4: В обучении нейросети используются все входные данные.
Миф 5: Для обучения очень глубоких остаточных сетей требуется пакетная нормализация.
Миф 6: Сети с вниманием [attention] лучше свёрточных [convolution].
Миф 7: Карты значимости – надёжный способ интерпретации нейросетей.

А теперь — подробности.
Читать полностью »

Свёрточные нейросети отлично справляются с классификацией искажённых изображений, в отличие от людей

У нейросетей удивительно простая стратегия классификации изображений - 1

В данной статье я покажу, почему передовые глубинные нейросети прекрасно могут распознавать искажённые изображения и как это помогает раскрыть удивительно простую стратегию, используемую нейросетями для классификации естественных фотографий. У этих открытий, опубликованных в ICLR 2019, есть много последствий: во-первых, они демонстрируют, что найти «решение» ImageNet гораздо проще, чем считалось. Во-вторых, они помогают нам создавать более интерпретируемые и понятные системы классификации изображений. В-третьих, они объясняют несколько явлений, наблюдаемых в современных свёрточных нейросетях (СНС), к примеру, их склонность к поиску текстур (см. другую нашу работу в ICLR 2019 и соотв. запись в блоге), и игнорирование пространственного расположения частей объекта.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js