Рубрика «нейросети» - 24

Издевательски точный, быстрый и легковесный поиск баркодов через семантическую сегментацию - 1Поиск объектов на изображениях? Имея обучающую выборку и минимальный набор знаний о нейросетях, любой студент сегодня может получить решение определенной точности. Однако большинство нейросетей, использующихся для решения этой задачи, достаточно глубокие, а соответственно, требуют много данных для обучения, сравнительно медленно работают на этапе inference (особенно если на устройстве отсутствует GPU), много весят и достаточно энергозатратны. Все вышеперечисленное может быть весьма критично в определенных случаях, в первую очередь, для мобильных приложений.

Баркоды — объекты с достаточно простой структурой. В ходе исследований у нас получилось с помощью сравнительно оригинального подхода искать такие простые объекты весьма точно (мы побили state-of-the-art) и достаточно быстро (real-time на среднем CPU). Плюс наш детектор очень легкий, имеющий всего 30к весов. О результатах нашего исследования мы и расскажем в этой статье.Читать полностью »

image
Все мы знакомы с такой способностью нейронных сетей, как распознавание рукописного текста. Основы этой технологии существуют уже много лет, но, лишь относительно недавно, скачок в области компьютерных мощностей и параллельной обработки данных позволили сделать из этой технологии очень практичное решение. Тем не менее, это практичное решение, в основе своей, будет представлено в виде цифрового компьютера многократно изменяющего биты, точно так же, как и при выполнении любой другой программы. Но в случае с нейронной сетью, разработанной исследователями из университетов Wisconsin, MIT, и Columbia, дело обстоит по-другому. Они создали стеклянную панель, не требующую собственного электропитания, но при этом способную распознавать рукописные цифры.
Читать полностью »

В новом выпуске нашего дайджеста дизайн Яндекс.Авто, карта метро, некстген симуляция движения человека, личные проекты, лучший квартал для мобайла за всю историю, простое объяснение юнит-экономики и много другого интересного.

Дайджест интересных материалов для мобильного разработчика #306 (8 — 14 июля) - 1Читать полностью »

Вот какие посты мы обсудили в этом выпуске:

Читать полностью »

Сотрудники Сеульского университета опубликовали исследование о симуляции движения двуногих персонажей на основе работы суставов и мышечных сокращений, использующей нейросеть с Deep Reinforcement Learning. Под катом перевод краткого обзора.

Бег с протезами: некстген симуляция движения человека с помощью мышц, костей и нейросети - 1
Читать полностью »

Машинное обучение vs. аналитический подход - 1

Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »

XLNet против BERT - 1

В конце июня коллектив из Carnegie Mellon University показал нам XLNet, сразу выложив публикацию, код и готовую модель (XLNet-Large, Cased: 24-layer, 1024-hidden, 16-heads). Это предобученная модель для решения разных задач обработки естественного языка.

В публикации они сразу же обозначили сравнение своей модели с гугловым BERT-ом. Они пишут, что XLNet превосходит BERT в большом количестве задач. И показывает в 18 задачах state-of-the-art результаты.
Читать полностью »

Когда человек учится играть в гольф, большую часть времени он обычно проводит за постановкой базового удара. К другим ударам он подходит потом, постепенно, изучая те или иные хитрости, основываясь на базовом ударе и развивая его. Сходным образом мы пока что фокусировались на понимании алгоритма обратного распространения. Это наш «базовый удар», основа для обучения для большей части работы с нейросетями (НС). В этой главе я расскажу о наборе техник, которые можно использовать для улучшения нашей простейшей реализации обратного распространения, и улучшить способ обучения НС.

Среди техник, которым мы научимся в этой главе: лучший вариант на роль функции стоимости, а именно функция стоимости с перекрёстной энтропией; четыре т.н. метода регуляризации (регуляризации L1 и L2, исключение нейронов [dropout], искусственное расширение обучающих данных), улучшающих обобщаемость наших НС за пределы обучающих данных; лучший метод инициализации весов сети; набор эвристических методов, помогающих выбирать хорошие гиперпараметры для сети. Я также рассмотрю и несколько других техник, чуть более поверхностно. Эти обсуждения по большей части не зависят друг от друга, поэтому их можно по желанию перепрыгивать. Мы также реализуем множество технологий в рабочем коде и используем их для улучшения результатов, полученных для задачи классификации рукописных цифр, изученной в главе 1.
Читать полностью »

Обсудили непростую тему конкуренции на примере Яндекса, понастольгировали по играм нашего детства, порассуждали про границы дозволенного при распространении информации и с трудом поверили в пентагоновский лазер. Темы новостей и ссылки на них ищите внутри поста.

Читать полностью »

Новости недели: Raspberry Pi 4 в продаже, интернет на ЕГЭ, Роскомнадзор и VPN-сервисы, нейросеть раздевает людей - 1

В этом выпуске читайте:

  • Raspberry Pi 4 уже можно купить;
  • на ЕГЭ не будут запрещать пользоваться Интернетом;
  • в России разработан процессор для нейросетей;
  • Роскомнадзор не собирается блокировать непослушные VPN-сервисы;
  • нейросеть научилась раздевать людей на фотографиях;
  • аппаратный эмулятор Commodore 64 появится зимой;
  • глобальное наблюдение за водителями в России.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js