В статье пойдёт речь о том, как можно автоматически разделить датасет изображений на кластеры, которые поделены по качественному контекстному признаку, благодаря эмбедингам из нашумевшей нейронной сети CLIP от компании Илона Маска. Расскажу на примере контента из нашего приложения iFunny.
Рубрика «нейросети» - 15
Кластеризация изображений с помощью нейросети CLIP
2022-01-13 в 10:45, admin, рубрики: CLIP, clustering, clusterization, data engineering, dbscan, machine learning, OpenAI, python, umap, Блог компании FunCorp, искуственный интеллект, машинное обучение, нейросети, обработка изображенийКак ИИ учится рисовать аниме
2022-01-12 в 12:10, admin, рубрики: AI, аниме, Блог компании Cloud4Y, искусственный интеллект, машинное обучение, нейросетиАниме — мультипликация, которая интересна не только подросткам. Даже среди суровых бородатых айтишников в свитерах есть ценители этого направления. Создатели Waifu Labs – сайта для генерации аниме-портретов – поделились своей внутренней кухней и рассказали, как ИИ создаёт рисунки.
Проекту Waifu Labs исполняется 2 года, за это время их художник-нейросеть «нарисовала» около 20 миллионов изображений.
Inductive bias и нейронные сети
2021-11-26 в 9:21, admin, рубрики: inductive bias, Transformers, искусственный интеллект, машинное обучение, нейросети, обработка изображений, обучение нейронных сетей, теория нейронных сетейВ этой статье я расскажу, что такое inductive bias, зачем он нужен и где встречается в машинном обучении. Спойлер: везде. Любая нейросеть имеет inductive bias (даже та, что в человеческом мозге, хе-хе)
Также вы узнаете:
-
почему inductive bias — это очень хорошо
-
способы внедрить inductive bias в модели машинного обучения
-
какой inductive bias в сверточных нейросетях и как успех архитектуры Image Transformer связан с inductive bias
Ну что, поехали:
Юлий Цезарь в мире ИИ: Google разрабатывает многозадачную ИИ-модель Pathways
2021-11-07 в 12:11, admin, рубрики: Google, Блог компании Neuro.net, будущее здесь, искусственный интеллект, мозг, нейросетиКорпорация Google заявила о началеЧитать полностью »
Рисуем вместе с CLIP Guided Diffusion HQ
2021-11-03 в 13:00, admin, рубрики: CLIP, ruvds_статьи, Блог компании RUVDS.com, будущее здесь, генерация изображений, дизайн, машинное обучение, нейросети, обработка изображений
Во времена старого Баша мне запомнилась одна цитата:
kok:
Подскажите какой прогой перегонять книги из txt в mp3
Izzzum:
^^^^^ No Comment а почему сразу не в 3gp или XviD?
kok:
А в каком по твоему формате аудиокниги?
kok:
Или ты думаешь, что какойто дурень сидит и начитывает перед микрофоном?
Что ж, если не предъявлять слишком высоких требований к реалистичности результата, можно сказать, что сегодня у нас такие «проги» есть. Речь, конечно же, о нейросетях, которые умеют генерировать практически любые виды контента.
Как классифицировать данные без разметки
2021-09-07 в 11:30, admin, рубрики: data engineering, data science, machine learning, python, Блог компании FunCorp, классификатор данных, классификация изображений, машинное обучение, нейросети, обработка данных, обработка изображений, сверточные нейросетиПользователи iFunny ежедневно загружают в приложение около 100 000 единиц контента, среди которого не только мемы, но и расизм, насилие, порнография и другие недопустимые вещи.
Как Яндекс помогает преодолеть языковой барьер: нейросетевой перевод видео, картинок и текста
2021-09-07 в 7:02, admin, рубрики: Блог компании Яндекс, браузеры, искусственный интеллект, команда яндекс.браузера, команда яндекс.переводчика, нейросети, перевод видео, Софт, яндексНедавно мы впервые показали прототип переводчика видео в Яндекс.Браузере. Прототип работал с ограниченным числом роликов, но даже в таком виде вызвал интерес у пользователей. Теперь мы переходим к следующему ключевому этапу: в новых версиях Браузера и приложения Яндекс перевод доступен для всех англоязычных роликов на YouTube, Vimeo, Facebook и других популярных платформах.
Сегодня я не только расскажу о том, как устроен новый переводчик видео и какие у нас планы, но и поделюсь предысторией. Потому что считаю, что контекст важен: мы шли к этому шагу более десяти лет. Но если история вам вдруг не интересна, то можете сразу переходить к разделу «Перевод видео», где я описал работу технологии (а точнее, целого комплекса наших технологий) по шагам.
Десятью годами ранее
В 2011 году в Яндексе решалась судьба собственного полноценного браузера. На тот момент браузеров на любой цвет и вкус уже хватало. Но почти все они создавались «где-то там»: без оглядки на рунет и потребности тех пользователей, для которых английский язык и латиница не были родными. Поэтому мы решили создать свой браузер, который бы в числе прочего более полно поддерживал русский язык и наши с вами «региональные» потребности. Уверен, эта фраза звучит непонятно, поэтому ниже вас ждут два моих любимых примера. Они не связаны с переводом, но показательны.
Как развитие алгоритмов сжатия остановилось 20 лет назад, или о новом конкурсе на 200 тысяч евро
2021-08-02 в 7:02, admin, рубрики: computer science, data science, deep learning, pytorch, TensorFlow, Алгоритмы, алгоритмы сжатия, арифметическое сжатие, искусственный интеллект, машинное обучение, Научно-популярное, нейросети, призы, Программирование, сжатие данных, скорость прогресса, соревнования, теорема Шеннона, трансформерыВ октябре прошлого года я опубликовал статью «О талантах, деньгах и алгоритмах сжатия данных», где с юмором описал, как «изобретают» новые алгоритмы сжатия люди, не имеющие достаточно навыков для реализации своих идей. А заодно рассказал про существующие конкурсы по новым алгоритмам, в том числе двигавшийся тогда к завершению конкурс алгоритмов сжатия с призовым фондом 50 тысяч евро.
Пост набрал 206 «плюсов», вышел на 2 место топа недели и вызвал оживленную дискуссию, в которой мне больше всего понравился комментарий: «Коммерческого интереса эффективность по сжатию алгоритмов сжатия без потерь сегодня не представляет, в силу отсутствия принципиально более эффективных алгоритмов. Деньги сегодня — в сжатии аудио-видео. И там и алгоритмы другие. Тема сжатия без потерь удобна именно лёгкостью верификации алгоритма, и не слегка устарела. Лет на 20.»
Поскольку я сам уже 20 лет в области сжатия видео, с ее бурным развитием мне спорить сложно. А вот что сжатие без потерь развиваться перестало… Хотя логика тут понятна каждому. Я до сих пор пользуюсь ZIP, все мои друзья пользуются ZIP с 1989 года — значит, ничего нового не появляется. Так ведь? Похоже рассуждают сторонники плоской земли. ))) Я не видел, знакомые не видели, и даже некоторые авторитеты утверждают, значит, это так!
О том, как Intel просили меня не прекращать читать курс по сжатию, ибо людей нет новые алгоритмы делать, я в прошлый раз писал. Но тут и Huawei в ту же дуду дует! Вместо того, чтобы раздать призы и должности победителям, а затем успокоиться, поскольку развитие давно встало, эти эксцентричные люди посчитали конкурс крайне успешным и запустили новый с призовым фондом 200 тысяч EUR.
Развивались ли алгоритмы сжатия без потерь в последние 20 лет? Чем закончился прошлый конкурс и на сколько опередили baseline? Сколько денег получили русские таланты, а сколько зарубежные? И есть ли вообще жизнь на Марсе в сжатии без потерь?
Кому интересно — добро пожаловать под кат! Читать полностью »
Сговор и жульничество в академических кругах
2021-07-05 в 8:29, admin, рубрики: AI, ml, Блог компании VDSina.ru, жульничество, искусственный интеллект, круговая порука, машинное обучение, мошенничество, наука, Научно-популярное, научные конференции, нейросети, обман, рецензирование
«Он не публиковался» © Mischa Richter
На Хабре много говорилось о проблеме "publish or perish" (публикуйся или умри), фейковых журналах и конференциях, накрутке числа публикаций и индекса цитируемости, фальшивых «соавторах», даже о генераторах псевдонаучных текстов. Но в 2021 году выявилось ещё одно очень неприглядное явление: круговое голосование рецензентов. Когда статьи выбирают не по значимости, а по именам авторов, то это подрывает основы взаимного доверия и цельность всей научной области.
Конечно, тут ничего нового и «все всё знали». Просто нарыв наконец-то вскрылся…
На одной из конференций раскрыли попытку жульничества в системе отбора публикаций. К сожалению, «отличилась» наша отрасль — информатика (computer science).
Читать полностью »