Рубрика «нейронный перевод»

Нейронный машинные перевод (НМП, англ. Neural Machine Translation, NMT) развивается очень быстро. Сегодня, чтобы собрать свой переводчик, не нужно иметь два высших образования. Но чтобы обучить модель, нужен большой параллельный корпус (корпус, в котором предложению на исходном языке сопоставлен его перевод). На практике речь идет хотя бы об одном миллионе пар предложений. Есть даже отдельная большая область НМП, исследующая методы обучения языковых пар с малым количеством данных в электронном виде (англ. Low Resource NMT).

Мы собираем чувашско-русский корпус и параллельно смотрим, что можно сделать с имеющимся объемом данных. В этом примере использовали корпус из 90 000 пар предложений. Самый хороший результат на данный момент дал метод передачи знания (англ. Transfer Learning), о нем и пойдет речь в статье. Цель статьи — дать практический пример реализации, который легко можно было бы воспроизвести.Читать полностью »

Пользователи Lokalise могут выбирать, локализовать им свой продукт с привлечением наёмных переводчиков площадки, с собственной командой или исключительно своими силами. Именно для упрощения процедуры локализации тех проектов, где профессиональные переводчики не нужны и достаточно собственных знаний языка, мы и предоставляем нашим пользователям возможность использовать встроенные в Lokalise популярные системы машинного перевода от Google, Yandex, Microsoft и SDL. О том, как переводят эти системы, мы сегодня и поговорим на конкретных примерах.

«Чемодан из крокодиловой кожи» или «мешок с аллигатором»: сравнение подключенных к Lokalise онлайн-переводчиков - 1

Google Machine Translate/Google Neural Translate

Около полугода назад компания Google заявила о подключении очередного набора языков к нейронной сети своего сервиса Google Translate, в том числе и русского. Событие это стало знаковым для всего русскоязычного интернет-пространства: ежедневно тысячи человек пользуются встроенным в Chrome переводчиком Google или идут на сайт Google Translate за переводом иностранного текста на родной язык.
Читать полностью »

Описание процессов машинного перевода основанного на базе правил (Rule-Based), машинного перевода на базе фраз (Phrase-Based) и нейронного перевода

image

В этой публикации нашего цикла step-by-step статей мы объясним, как работает нейронный машинный перевод и сравним его с другими методами: технологией перевода на базе правил и технологией фреймового перевода (PBMT, наиболее популярным подмножеством которого является статистический машинный перевод — SMT).

Результаты исследования, полученные Neural Machine Translation, удивительны в части того, что касается расшифровки нейросети. Создается впечатление, что сеть на самом деле «понимает» предложение, когда переводит его. В этой статье мы разберем вопрос семантического подхода, который используют нейронные сети для перевода.

Давайте начнем с того, что рассмотрим методы работы всех трех технологий на различных этапах процесса перевода, а также методы, которые используются в каждом из случаев. Далее мы познакомимся с некоторыми примерами и сравним, что каждая из технологий делает для того, чтобы выдать максимально правильный перевод.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js