Рубрика «нейронные сети» - 8

image
Источник фото
Карликовая многозубка, самое маленькое млекопитающее по массе. Внутри маленький целостный сложный мозг, который уже принципиально можно картировать

Короткий ответ — можно, но не полную и не очень точную. То есть мы ещё не можем скопировать её сознание, но приблизились к этому как никогда. Проживите ещё лет двадцать — и, возможно, ваш мозг тоже получится забэкапить.

Чтобы приблизиться к оцифровке сознания и такому экзотическому виду бессмертия, стоит сначала разобраться с живыми нейронными сетями. Их реверс-инжиниринг показывает нам, как вообще может быть устроен процесс мышления (вычислений) в хорошо оптимизированных системах.

60 лет назад, 13 сентября 1960 года, учёные собрали первый симпозиум из биологов и инженеров, чтобы они могли разобраться, в чём же разница между сложной машиной и организмом. И есть ли она вообще. Науку назвали бионикой, а целью обозначили применение методов биологических систем к прикладной инженерии и новым технологиям. Биосистемы рассматривались как высокоэффективные прототипы новой техники.

Военный нейроанатом Джек Стил стал одним из людей, заметно повлиявших на дальнейший прогресс в области технологий, в том числе в области ИИ, где развитие получили такие направления, как нейроморфная инженерия и биоинспирированные вычисления. Стил был медиком, разбирался в психиатрии, увлекался архитектурой, умел управлять самолётом и сам чинил свою технику, то есть был вполне неплохим прикладным инженером. Научная работа Стила стала прообразом сценария фильма «Киборг». Так что с некоторой натяжкой можно назвать его прадедушкой Терминатора. А где Терминатор, там и Скайнет, как известно.

Этот пост написан на основе материалов будущей книги нашего коллеги Сергея Маркова «Охота на электроовец: большая книга искусственного интеллекта».
Читать полностью »

image

Когда дело касается распознавания объектов, первые клики будут в сторону Google или Microsoft. Что если они сразятся между собой в распознавании автомобилей? Мы провели исследование, добавив в список игроков белорусский сервис SpotVision Car Detection. Кто победит?
Читать полностью »

Привет! Меня зовут Александр Соловьев, я программист компании DataLine.

Хочу поделиться опытом внедрения модных нынче нейронных сетей в нашей компании. Все началось с того, что мы решили строить свой Service Desk. Зачем и почему именно свой, можно почитать моего коллегу Алексея Волкова (cface) тут

Я же расскажу о недавнем новшестве в системе: нейросеть в помощь диспетчеру первой линии поддержки. Если интересно, добро пожаловать под кат.

Нейронки «с нуля», или Как мы делали помощника для наших диспетчеров техподдержки - 1
Читать полностью »

image

Рендеринг в реальном времени для виртуальной реальности создаёт уникальный спектр задач, и основными из них являются необходимость поддержки фотореалистичных эффектов, достижение высоких разрешений и увеличение частоты обновления. Для решения этих задач исследователи Facebook Reality Labs разработали DeepFocus — систему рендеринга, представленную нами в декабре 2018 года; она использует ИИ для создания сверхреалистичной графики в устройствах с переменным фокусным расстоянием. В этом году на виртуальной Конференции SIGGRAPH мы представили дальнейшее развитие этой работы, открывающее новый этап на нашем пути к созданию будущих дисплеев высокой чёткости для VR.
Читать полностью »

Данная статья посвящается объяснению устройства архитектуры нейронной сети RetinaNet. Обзор был проведён мною в ходе выполнения дипломной работы, а так как для его написания потребовалось обращаться исключительно к англоязычным источникам и собрать найденную информацию воедино, я решил, что полученный материал поможет кому-то сократить время на поиск нужной информации и упростить понимание устройства нейросетей для задачи Object Detection.

Введение

Архитектура свёрточной нейронной сети (СНС) RetinaNet состоит из 4 основных частей, каждая из которых имеет своё назначение:

a) Backbone – основная (базовая) сеть, служащая для извлечения признаков из поступающего на вход изображения. Данная часть сети является вариативной и в её основу могут входить классификационные нейросети, такие как ResNet, VGG, EfficientNet и другие;

b) Feature Pyramid Net (FPN) – свёрточная нейронная сеть, построенная в виде пирамиды, служащая для объединения достоинств карт признаков нижних и верхних уровней сети, первые имеют высокое разрешение, но низкую семантическую, обобщающую способность; вторые — наоборот;

c) Classification Subnet – подсеть, извлекающая из FPN информацию о классах объектов, решая задачу классификации;

d) Regression Subnet – подсеть, извлекающая из FPN информацию о координатах объектов на изображении, решая задачу регрессии.

На рис. 1 изображена архитектура RetinaNet c ResNet нейросетью в качестве backbone.

Архитектура нейронной сети RetinaNet - 1
Рисунок 1 – Архитектура RetinaNet с backbone-сетью ResNet

Разберём подробно каждую из частей RetinaNet, представленных на рис. 1.
Читать полностью »

Кто-то с ужасом, а кто-то с нетерпением ждет ИИ как в произведениях фантастов. С личностью, эмоциями, энциклопедическими знаниями и главное – с интеллектом, то есть способностями к логическим выводам, оперированию абстрактными понятиями, выделению закономерностей в окружающем мире и превращению их в правила. Как мы знаем, именно такой ИИ теоретики называют «сильным» или ещё AGI. Пока это далеко не мейнстримное направление в машинном обучении, но руководители многих больших компаний уже считают, что сложность их бизнеса превысила когнитивные способности менеджеров и без «настоящего ИИ» двигаться вперёд станет невозможно. Идут дискуссии, что же это такое, каким он должен быть, как сделать тест чтобы уж точно понять, что перед нами AGI, а не очередной blackbox, который лучше человека решает локальную задачу – например, распознавание лица на фотографии.

Три недели назад на каггле прошло первое в истории платформы соревнование по «сильному» ИИ – Abstraction and Reasoning Challenge. Чтобы проверить способность моделей к обобщению и решению абстрактных задач, все участники суммарно решили только чуть менее половины задач. Решение-победитель справляется приблизительно с 20% из них — и то девятичасовым перебором вручную захардкоженных правил (ограничение в девять часов установили организаторы).

В посте я хочу напомнить о сложностях работы с AGI, рассказать о самых интересных идеях участников, топовых решениях и поделиться мнением, что не так с текущими попытками создать AGI.
Читать полностью »

Сравнение мозга с нейронной сетью - 1

Можно встретить много критических замечаний о том, что биологический мозг или биологические нейронные сети работают совершенно не так как ныне популярные компьютерные нейронные сети. К подобным замечаниям прибегают различные специалисты, как со стороны биологов, нейрофизиологов так и со стороны специалистов по компьютерным наукам и машинному обучению, но при этом очень мало конкретных замечаний и предложений. В этой статье мы попытаемся провести анализ этой проблемы и выявить частные различия между работой биологической и компьютерной нейронной сетью, и предложить пути улучшения компьютерных нейронных сетей которые приблизят их работу к биологическому аналогу.
Читать полностью »

Чтобы машины могли обрабатывать текст на русском и «понимать» его, в NLP используются универсальные языковые модели и трансформеры — BERT, RoBERTa, XLNet и другие — архитектуры от 100 миллионов параметров, обученные на миллиардах слов. Все оригинальные модели появляются обычно для английского, показывают state-of-the-art в какой-нибудь прикладной задаче и только спустя полгода-год появляются и для русского языка, без тюнинга архитектуры.

Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей - 1

Чтобы корректнее обучать свою модель для русского или другого языка и адаптировать её, хорошо бы иметь какие-то объективные метрики. Их существует не так много, а для нашей локали и вовсе не было. Но мы их сделали, чтобы продолжить развитие русских моделей для общей задачи General Language Understanding.

Мы — это команда AGI NLP Сбербанка, лаборатория Noah’s Ark Huawei и факультет компьютерных наук ВШЭ. Проект Russian SuperGLUE — это набор тестов на «понимание» текста и постоянный лидерборд трансформеров для русского языка.
Читать полностью »

Мы уже рассказывали, как Яндекс.Погода делает сверхкраткосрочный прогноз осадков по метеорологическим радарам и спутниковым наблюдениям. Сегодня расскажем, как нам удалось поднять качество такого прогноза за счет внедрения нейросетевых подходов и почему мы уже отказывались от них в прошлом. А ещё вы узнаете, как мы улучшали визуальное восприятие самой карты на границе радарных и спутниковых наблюдений.

И снова про наукастинг

Когда мы говорим о прогнозе погоды, то чаще всего подразумеваем температуру и осадки, например, на завтра или ближайшие выходные. В этом случае хватает традиционных погодных трендов. Но если вы идёте обедать на улицу или на прогулку с ребёнком и при этом не хотите попасть под дождь, то важно знать точный момент начала дождя в течение ближайшего получаса. В таких ситуациях приходит на помощь наша карта осадков aka nowcasting.

Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды - 1

Рисунок 1. Карта осадков Яндекс.Погоды
Читать полностью »

Развитие беспилотных технологий на железной дороге началось достаточно давно, уже в 1957 году, когда был создан первый экспериментальный комплекс автоведения для пригородных поездов. Для понимания разницы между уровнями автоматизации для железнодорожного транспорта введена градация, определенная в стандарте МЭК-62290-1. В отличие от автомобильного транспорта железнодорожный имеет 4 степени автоматизации, показанные на рисунке 1.

image

Рисунок 1. Степени автоматизации в соответствии с МЭК-62290

Практически все поезда, эксплуатирующие на сети ОАО «РЖД» оснащены устройством безопасности, соответствующему уровню автоматизации 1. Поезда с уровнем автоматиазции 2 уже более 20 лет успешно эксплуатируются на сети российских железных дорог, оснащено несколько тысяч локомотивов. Данный уровень реализуется за счет алгоритмов управления тягой и торможения энергооптимального ведения поезда по заданному маршруту с учетом расписания и показаний систем автоматической локомотивной сигнализации, принимаемых по индуктивному каналу с рельсовых цепей. Применение 2 уровня понижает утомляемость машиниста и дает выигрыш по энергопотреблению и точности исполнения графика движения.

Уровень 3 предполагает возможное отсутствие машиниста в кабине, что требует внедрения системы технического зрения.

Уровень 4 предполагает полное отсутствие машиниста на борту, что требует существенного изменения конструкции локомотива (электропоезда). Например, на борту установлены автоматические выключатели, которые будет невозможно взвести снова при их срабатывании без присутствия человека на борту.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js