Рубрика «нейронные сети» - 34

IARPA ищет в мозгах крыс способы улучшения искусственного интеллекта - 1

Большие данные и более быстрые компьютеры запустили новую волну прогресса и инвестиций в искусственный интеллект. Нейробиолог и компьютерный ученый из Гарвардского университета Дэвид Кокс считает, что следующий большой скачок будет зависеть от того, что происходит в голове у крысы, когда она играет в видеоигры. Читать полностью »

Навскидку, выставка «Меркур и другие конструкторы» в культурном центре ЗИЛ не производит впечатления — вот конструктор металлический, вот пластмассовый, вот инженерный и т.д.

Но один стенд привлекает внимание — он демонстрирует с десяток цифровых конструкторов, среди которых:

Как устроен цифровой конструктор: базовые принципы - 1

— конструктор фантастических существ для школьников, который объясняет всю культуру Древней Греции за 5 минут,

— онлайн-конструктор роботов из подручных материалов, объясняющий, куда девать старый пионерский значок с Лениным,

— и конструктор классических пейзажей для посетителей Третьяковской галереи — он объясняет, почему все пейзажи 18-го века более-менее одинаковы.

Раз конструкторы все чаще попадаются нам в цифровой форме — полезно знать общую концепцию их устройства. Об этом и поговорим с экспертом.
Читать полностью »

Система распознавания речи Microsoft достигла человеческого уровня - 1

Обучаемые нейронные сети Microsoft теперь распознают человеческий голос так же хорошо, как и люди. В докладе команды исследователей в области научного интеллекта Speech & Dialog сказано, что система распознавания речи теперь ошибается так же часто, как и профессиональные стенографисты. В некоторых случаях система способна совершать меньше ошибок. Читать полностью »

Артём Кухаренко, основатель компании NTechLab — о распознавании лиц, потенциале нейросетей и бизнесе - 1

Про NTechLab все услышали в тот момент, когда демонстратор идентификационного алгоритма FindFace стал доступен в Сети — людей шокировало, что вот так просто, несколькими кликами, можно по фотографии определить сетевые координаты чуть ли не любого человека: прохожего, пассажира напротив и так далее.

Хотя путь Артёма Кухаренко по пути распознавания лиц начался задолго до этого, а наиболее значительно точкой, на самом деле, была победа в конкурсе Вашингтонского университета MegaFace — вчера компания анонсировала свой облачный SaaS-продукт FindFace.pro, которому уже сейчас сулят большое будущее.

Мы поговорили с Артёмом про алгоритмы и бизнес, а также перспективы технологий умного распознания объектов.Читать полностью »

Логика сознания. Часть 8. Пространственные карты коры мозга - 1

Для любой модели, которая претендует на объяснение работы мозга, важна ее «работоспособность» и согласованность с экспериментальными данными. Например, традиционные нейронные сети обладают определенной работоспособностью, но слабой согласованностью. То есть, они решают некоторые задачи, которые решает реальный мозг, при этом их структура и поведение очень слабо похожи на структуру коры и поведение биологических нейронов.  В этой части пойдет разговор о согласованности той пространственной организации, что возникает в предлагаемой модели, и пространственной организации, свойственной реальной коре.

В свое время Вернон Маунткасл выдвинул гипотезу, что для мозга кортикальная колонка – это основная структурная единица переработки информации. В свете описываемой модели можно конкретизировать функции кортикальных миниколонок, механизмы их работы и принципы взаимодействия.

В предлагаемой модели мы исходим из того, что мозг оперирует информацией, которая состоит из дискретных понятий. Каждому понятию соответствует волна с определенным уникальным внутренним узором. Носителями волн, предположительно, являются дендритные сегменты. По узорам, которые создают информационные волны, распространяясь по какой-либо зоне коры, миниколонки этой зоны получает информационное описание происходящего. Одна и та же информация поступает в каждую миниколонку.Читать полностью »

В DeepMind создали компьютер, который сам учится использовать свою память - 1

DeepMind разработала новый тип ИИ, способный учиться использовать собственную память. Проект получил название "Дифференциальный нейронный компьютер" (Differential Neural Computer, или DNC).

Какие последствия может иметь проект, цель которого — «научить» компьютер использовать собственную память? Главное — слабая форма ИИ становится более эффективной, чем когда-либо. Например, такая система может помочь человеку передвигаться в полностью незнакомом городе без малейших неудобств.
Читать полностью »

В статье рассматривается факторное моделирование с помощью метода факторизации на базе нейронной сети и алгоритма обратного распространения ошибки. Этот метод факторизации является альтернативой классическому факторному анализу. Данный метод был усовершенствован для проведения факторного вращения и получения интерпретируемого решения. Факторная структура, полученная с помощью данного метода факторизации, находятся в соответствии с результатами факторного моделирования посредством других методов.
Читать полностью »

image

В этой статье я хочу поделиться с Вами моим опытом в изучении нейронных сетей и, как следствие, их реализации, с помощью языка программирования Java, на платформе Android. Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

Поэтому сейчас, когда я достаточно хорошо освоил нейронные сети и нашел огромное количество информации с разных иностранных порталов, я хотел бы поделиться этим с людьми в серии публикаций, где я соберу всю информацию, которая потребуется вам, если вы только начинаете знакомство с нейронными сетями. В этой статье, я не буду делать сильный акцент на Java и буду объяснять все на примерах, чтобы вы сами смогли перенести это на любой, нужный вам язык программирования. В последующих статьях, я расскажу о своем приложении, написанном под андроид, которое предсказывает движение акций или валюты. Иными словами, всех желающих окунуться в мир нейронных сетей и жаждущих простого и доступного изложения информации или просто тех, кто что-то не понял и хочет подтянуть, добро пожаловать под кат.
Читать полностью »

Цикл статей «Логика сознания» подошел к своей середине. Семь предыдущих частей были посвящены описанию паттерно-волновой модели распространения информации в мозгу, присущего этой модели механизма квазиголографической памяти, смысловой модели информации и того как миниколонки коры создают пространство вычисления контекстов.

Предлагаемая модель не относится к мейнстриму нейронауки. Большинство современных исследователей считают, что искусственные нейронные сети и биологические нейронные конструкции близки по своей сути и основаны на общих принципах. В нашей модели, мозг не имеет ничего общего с нейронными сетями. Различие приблизительно такое же, как между классической и квантовой механикой. Внешне результаты местами могут быть похожи, но в основе лежат совершенно разные принципы.
Читать полностью »

Структура и стартовые настройки мозга - 1

Знание того как работает нейрон недостаточно для понимания того, чем обусловлено разумное и интеллектуальное поведение. Эволюция совершила удивительное мастерство, создав систему из относительно простых элементов, способную поразить невероятной успешностью во взаимодействии с окружающей средой. Недостаточно взять некую массу связанных нейронов (даже сложив слоями) подключить к ней датчики и выводы и получить хоть какое-то подобие мозга. Главным полем работы эволюции на протяжении миллионов лет является не нейрон, а структура и внутренняя организация нервных клеток в нервной системе.
В предыдущей части мы говорили о структуре коры мозжечка и на его примере видно, что структура и организация является фундаментальной для его функций. Давайте разберемся в том, как организованна кора больших полушарий, структура благодаря которой Человек стал самым успешным видом на Земле.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js