Рубрика «нейронные сети» - 27

или Перерастает ли количество в качество

Статья по мотивам выступления на конференции РИФ+КИБ 2017.

Neural Machine Translation: почему только сейчас?

Про нейронные сети говорят уже давно, и, казалось бы, что одна из классических задач искусственного интеллекта – машинный перевод – просто напрашивается на то, чтобы решаться на базе этой технологии.

Тем не менее, вот динамика популярности в поиске запросов про нейронные сети вообще и про нейронный машинный перевод в частности:

image

Прекрасно видно, что на радарах вплоть до недавнего времени нет ничего про нейронный машинный перевод – и вот в конце 2016 года свои новые технологии и системы машинного перевода, построенные на базе нейронных сетей, продемонстрировали сразу несколько компаний, среди которых Google, Microsoft и SYSTRAN. Они появились почти одновременно, с разницей в несколько недель или даже дней. Почему так?

Для того, чтобы ответить на этот вопрос, необходимо понять, что такое машинный перевод на базе нейронных сетей и в чем его ключевое отличие от классических статистических систем или аналитических систем, которые используются сегодня для машинного перевода.

Читать полностью »


Это пятая публикация в рамках помощи участникам конкурса «SAP Кодер-2017».


18 мая 2017 года на презентации в офисе SAP Денис Савкин, руководитель Центра экспертизы SAP СНГ по решениям и технологиям, рассказал о принципах в основе машинного обучения. На реальных кейсах он показал, как технологии искусственного интеллекта могут изменить бизнес. Вопреки сложившемуся на рынке впечатлению, здесь нет никакой магии — лишь математика и ее правильное применение в соответствии с поставленной задачей. Предлагаем расшифровку его доклада.

Машинное обучение — магия или наука? - 1

Читать полностью »

До конца года остаётся 213 дней, так что самое время начать изучать что-то новое, например, погрузиться в науку о нейронных сетях. Сегодня за один день мы познакомимся с устройством нейросетей в прямом эфире, начиная с простых архитектур и заканчивая глубоким обучением — сетями, в которых десятки и сотни слоев. Также рассмотрим сверточные сети, применяемые для распознавания изображений, и рекуррентные сети для анализа последовательностей. Причем вы сможете вместе с нами обучить нейронную сеть для решения нетривиальных задач — от распознавания рукописных цифр до узнавания котиков на фотографиях.

Наука о нейронных сетях. Прямой эфир - 1
Читать полностью »

Нейронные сети в детектировании номеров - 1
Распознавание автомобильных номеров до сих пор является самым продаваемым решением на основе компьютерного зрения. Сотни, если не тысячи продуктов конкурируют на этом рынке уже на протяжении 20-25 лет. Отчасти поэтому сверточные нейронные сети (CNN) не бьют прежние алгоритмические подходы на рынке.
Но опыт последних лет говорит, что алгоритмы CNN позволяют делать надежные и гибкие для применения решения. Есть и еще одно удобство: при таком подходе всегда можно улучшить надежность решения на порядок после реального внедрения за счет переобучения.
Кроме того, такие алгоритмы отлично реализуются на GPU (графических модулях), которые значительно эффективней с точки зрения потребления электроэнергии, чем обычные процессоры. А платформа Jetson TX так просто потребляет очень мало по меркам современных вычислителей. Наглядное “энергетическое превосходство”:
Читать полностью »

Эксперименты с malloc и нейронными сетями - 1

Больше года назад, когда я работал антиспамщиком в Mail.Ru Group, на меня накатило, и я написал про эксперименты с malloc. В то время я в свое удовольствие помогал проводить семинары по АКОСу на ФИВТе МФТИ, и шла тема про аллокацию памяти. Тема большая и очень интересная, при этом охватывает как низкий уровень ядра, так и вполне себе алгоритмоемкие структуры. Во всех учебниках написано, что одна из основных проблем динамического распределения памяти — это ее непредсказуемость. Как говорится, знал бы прикуп — жил бы в Сочи. Если бы оракул заранее рассказал весь план по которому будет выделяться и освобождаться память, то можно было составить оптимальную стратегию, минимизирующую фрагментацию кучи, пиковое потребление памяти и т.д. Отсюда пошла возня с ручными аллокаторами. В процессе раздумий я натолкнулся на отсутствие инструментов логирования malloc() и free(). Пришлось их написать! Как раз про это была статья (а ещe я изучал macOS). Были запланированы две части, однако жизнь круто повернулась и стало не до malloc(). Итак, пора восстановить справедливость и реализовать обещанное: ударить глубоким обучением по предсказанию работы с кучей.

Внутри:

  • Совершенствуем libtracemalloc, перехватчик malloc().
  • Строим LSTM на Keras — глубокую рекуррентную сеть.
  • Обучаем модель на примере работы реального приложения (vcmi/vcmi — а вы думали, причем здесь Heroes III?).
  • Удивляемся неожиданно хорошим результатам.
  • Фантазируем про практическое применение технологии.
  • Исходники.

Интересно? Добро пожаловать под кат.

Читать полностью »

Дорогие коллеги, спешим порадовать всех, кто неравнодушен к наукоемким задачам. Сегодня мы приготовили для вас перевод любопытной публикации от экспертов по базам данных из CERN, посвященный обучению и эксплуатации нейронных сетей с помощью Python и инструментария на базе Oracle PL/SQL.

Механизм подсчета нейронной сети в PL-SQL для распознавания рукописных цифр - 1

В этой статье вы найдете пример построения и развертывания базового механизма подсчета искусственной нейронной сети с использованием PL/SQL. Статья предназначена для учебных целей, в частности для практиков Oracle, которые хотят на конкретном примере познакомиться с нейронными сетями.
Читать полностью »

image

Проект Google Magneta, состоящий из небольшой группы исследователей искусственного интеллекта внутри гигантских компьютерных систем, представил музыкантам новый набор инструментов для создания музыки — NSynth.

Magneta — часть подразделения Google Brain, центральной лаборатории искусственного интеллекта в компании. В лаборатории исследователи изучают границы возможностей нейронных сетей и других форм машинного обучения. Нейронные сети, представляющие собой сложные математические системы, изучающие задачи и анализирующие большие объемы данных, в последние годы вышли на передний план в задачах распознавания объектов и лиц на изображениях и переводах с одного языка на другой.

Теперь команда Magneta переворачивает эту идею с ног на голову, используя нейронные сети как способ обучения машин новым видам музыки и других искусств. На первом этапе NSynth работает с большой базой данных звуков. Джесси Энгель (Jesse Engle), один из сотрудников Magneta, и его команда собрали широкий диапазон нот примерно из тысячи разных инструментов, от скрипки до балафона, а затем предоставили свои наработки нейронной сети.

В отличие от традиционного синтезатора, который генерирует звук из осцилляторов и таблиц сэмплов, NSynth использует глубокую нейронную сеть для генерации звуков на уровне отдельных образцов. Инструмент предоставляет музыкантам интуитивный контроль тембра, динамики, а также возможность изучать и исследовать новые звуки, которые трудно или невозможно извлечь из обычного синтезатора.Читать полностью »

Доброго времени суток, пользователи Хабра и просто гости. Хотел бы поделиться с Вами опытом работы с нейронными сетями.

image

Читать полностью »

В начале зимы Яндекс.Погода научилась показывать, будут ли осадки в ближайшие два часа. Спустя пару месяцев тема метеопрогнозирования стала центральной на одном из мероприятий Data & Science. Среди докладчиков в тот день был Алексей Преображенский — разработчик из команды Яндекс.Погоды. Алексей рассказал о нашем алгоритме наукастинга и сверточной нейросети, лежащей в основе этого алгоритма.

Под катом — расшифровка лекции и слайды.

Читать полностью »

Сегментация строки на символы является одним из важнейших этапов в процессе оптического распознавания символов (OCR), в частности, при оптическом распознавании изображений документов. Сегментацией строки называется декомпозиция изображения, содержащего последовательность символов, на фрагменты, содержащие отдельные символы.

Важность сегментации обусловлена тем обстоятельством, что в основе большинства современных систем оптического распознавания текста лежат классификаторы (в том числе — нейросетевые) отдельных символов, а не слов или фрагментов текста. В таких системах ошибки неправильного проставления разрезов между символами как правило являются причиной львиной доли ошибок конечного распознавания.

Поиск границ символов усложняется из-за артефактов печати и оцифровки (сканирования) документа, приводящим к “рассыпанию” и “склеиванию” символов. В случае использования стационарных или мобильных малоразмерных видеокамер спектр артефактов оцифровки существенно пополняется: возможны дефокусировка и смазывание, проективные искажения, деформирование и изгибы документа. При съемке камерой в естественных сценах на изображениях часто возникают паразитные перепады яркости (тени, отражения), а также цветовые искажения и цифровой шум в результате низкой освещенности. На рисунке ниже показаны примеры сложных случаев при сегментации полей паспорта РФ.

Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 1Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 2
Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 3Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 4
Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 5Сегментация текстовых строк документов на символы с помощью сверточных и рекуррентных нейронных сетей - 6

В этой статье мы расскажем о методе сегментации символов текстовых строк документов, разработанном нами в Smart Engines, основанный на обучении сверточных и рекуррентных нейронных сетей. Основным рассматриваемым в работе документом является паспорт РФ.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js