Рубрика «нейронные сети» - 21

Модели машинного обучения нужно уметь не только разрабатывать, но и «продавать» заказчику. Если у него не будет понимания, почему предлагается именно такое решение, то всё закончится статьёй в журнале и выступлением на конференции. Директор компании Loginom Алексей Арустамов обращает внимание на ключевые моменты, которые важно отразить в описании модели. Это выступление прошло пару недель назад на конференции Яндекса из серии «Data & Science».

Если у вас цена ошибки маленькая, то вообще все равно, что там интерпретировать. Дали вы не ту рекомендацию — ну и бог с ней. В поиске что-то вывели — ну и ничего страшного. Но все меняется, когда речь идет о вещах, связанных с большими издержками, где цена ошибки очень большая. И тогда люди не очень любят доверять черному ящику. Это просто здравый смысл.

Читать полностью »

В новом дайжесте у нас Флаппи Бёрд с Короной, GDPR, поиск квадрокруга, лучшие открытые проекты, плоские иконки и измерения программистов, рекламные сети и основы науки о данных.

Дайджест интересных материалов для мобильного разработчика #249 (9 апреля — 15 апреля) - 1Читать полностью »

В прошлой статье мы рассмотрели простейшую линейную генеративную модель PPCA. Вторая генеративная модель, которую мы рассмотрим — Generative Adversarial Networks, сокращенно GAN. В этой статье мы рассмотрим самую базовую версию этой модели, оставив продвинутые версии и сравнение с другими подходами в генеративном моделировании на следующие главы.

Generative adversarial networks - 1

Читать полностью »

Если пять лет назад нейронная сеть считалась «тяжеловесным» алгоритмом, требующим железа, специально предназначенного для высоконагруженных вычислений, то сегодня уже никого не удивить глубокими сетями, работающими прямо на мобильном телефоне.
MobileNet: меньше, быстрее, точнее - 1
В наши дни сети распознают ваше лицо, чтобы разблокировать телефон, стилизуют фотографии под известных художников и определяют, есть ли в кадре хот-дог.

В этой статье мы поговорим о MobileNet, передовой архитектуре сверточной сети, позволяющей делать всё это и намного больше.
Читать полностью »

image
Dispute about eternal

Сердечно приветствую всех Хабравчан! С момента выхода первой части "Истинной реализации" (рекомендую ознакомиться) прошло достаточно много времени. Как внятных обучающих статей не было, так и нет, поэтому я решил подарить Вам возможность узнать от А до Я, как написать программу для распознавания цифр, в связи с тем, что мои знания в этой области заметно возросли. Как и в прошлый раз, предупреждаю, что данная статья ориентирована на тех, кто понимает основы работы нейронных сетей, но не понимает, как создать их «низкоуровневую», истинную реализацию. Приглашаю под кат ознакомиться с сим творением тех, кому надоели убогие реализации XOR, общая теория, использование Tensor Flow и др. Действующие лица: Шарпей, прошлогодняя Визуальная Студия, самодельный Набор Данных, Воплощение чистого разума и Ваш покорный слуга…

Читать полностью »

image

Красота, как известно, требует жертв, но и мир обещает спасти. Достаточно свежий (2015г) визуализатор от Google призван помочь разобраться с процессами, происходящими в сетях глубокого обучения. Звучит заманчиво.
Красочный интерфейс и громкие обещания затянули на разбор этого дизайнерского шайтана, с неинтуитивно отлаживающимися глюками. API непривычно скудный и часто обновляющийся, примеры в сети однотипны (глаза уже не могут смотреть на заезженный MNIST).
Чтобы опыт не прошел зря, решила поделиться максимально простым описанием инсайтов с хабравчанами, ибо рускоязычных гайдов мало, а англоязычные все как на одно лицо. Может, такое введение поможет вам сократить время на знакомство с Tensorboard и количество ругательных слов на старте. Также буду рада узнать, какие результаты он дал в вашем проекте и помог ли в реальной задаче.
Читать полностью »

Я давно интересовался нейросетями, но только с позиции зрителя – следил за новыми возможностями, которые они дают по сравнению с обычным программированием. Но никогда не лез ни в теорию, ни в практику. И вдруг (после сенсационной новости о AlphaZero) мне захотелось сделать свою нейросеть. Посмотрев несколько уроков по этой теме на YouTube, я немного врубился в теорию и перешёл к практике. В итоге я сделал даже лучше, чем свою нейросеть. Получился конструктор нейросетей и наглядное пособие по ним (то есть можно смотреть, что творится внутри нейросети). Вот как это выглядит:

Пощупать нейросети или конструктор нейронных сетей - 1
Читать полностью »

Привет! 2-3 марта на Мансарде наших партнёров, компании Rambler&Co, прошел уже традиционный Data Science Weekend, на котором было множество выступлений специалистов в области работы с данными. В рамках этой статьи расскажем вам о самых интересных моментах первого дня нашей конференции, когда все внимание было уделено практике использования алгоритмов машинного обучения, управлению коллективами и проведению соревнований в области Data Science.

Обзор первого дня Data Science Weekend 2018. Практика машинного обучения, новый подход к соревнованиям и многое другое - 1
Читать полностью »

Генерируем уровни для игры с помощью нейросетей - 1

Предисловие

За последние несколько лет прогресс в области искусственного интеллекта привёл к созданию методов машинного обучения на основе обучения представлениям (representation-learning) с несколькими слоями абстракции — так называемому «глубокому обучению». Общественное и медийное внимание было привлечено к этой области исследований благодаря древнекитайской настольной игре го. Несмотря на то, что сложность го часто сравнивают со сложностью самой жизни, программе AlphaGo, использующей глубокое обучение с подкреплением (deep reinforcement learning), удалось превзойти мирового чемпиона по го Ли Седоля. Удивительно, что исследования ИИ были использованы в играх и получили такое широкое общественное внимание. Стоит также заметить, что один из разработчиков AlphaGo, Демис Хассабис, был ведущим программистом Theme Park (1994 год) и ведущим программистом ИИ Black & White (2001 год). Игры и современный прогресс ИИ, возможно, имеют некую корреляцию.

Эта статья является постмортемом, отчётом о попытке нашей команды реализации генерирования уровней для Fantasy Raiders с помощью различных методов искусственных нейронных сетей. Раньше генерирование уровней было процессом кодирования знаний разработчика игры с помощью неких вероятностных техник. Однако для Fantasy Raiders мы написали программу, которая могла учиться и генерировать уровни на основании наших данных. Как нам кажется, в результате мы получили всего лишь ключ к решению задачи генерирования уровней, а не общее решение. Чтобы поделиться нашими открытиями с другими разработчиками игр мы хотим подробно рассказать о процессе наших исследований, от начала до конца.
Читать полностью »

imageВ последнее время машины одержали ряд убедительных побед над людьми: они уже лучше играют в го, шахматы и даже в Dota 2. Алгоритмы сочиняют музыку и пишут стихи. Учёные и предприниматели всего мира дают прогнозы по поводу будущего, в котором искусственный интеллект сильно превзойдёт человека. С большой вероятностью через несколько десятков лет мы будем жить в мире, в котором роботы не только водят автомобили и работают на заводах, но и развлекают нас. Одна из важных составляющих нашей жизни — юмор. Принято считать, что только человек может придумывать шутки. Несмотря на это, многие ученые, инженеры и даже простые обыватели задаются вопросом: можно ли научить компьютер шутить?

Компания Gentleminds, разработчик систем машинного обучения и компьютерного зрения, совместно с FunCorp попробовали создать генератор весёлых подписей к картинкам, используя базу мемов iFunny. Поскольку приложение англоязычное и используется преимущественно в США, подписи будут на английском. Подробности под катом.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js