Предисловие
За последние несколько лет прогресс в области искусственного интеллекта привёл к созданию методов машинного обучения на основе обучения представлениям (representation-learning) с несколькими слоями абстракции — так называемому «глубокому обучению». Общественное и медийное внимание было привлечено к этой области исследований благодаря древнекитайской настольной игре го. Несмотря на то, что сложность го часто сравнивают со сложностью самой жизни, программе AlphaGo, использующей глубокое обучение с подкреплением (deep reinforcement learning), удалось превзойти мирового чемпиона по го Ли Седоля. Удивительно, что исследования ИИ были использованы в играх и получили такое широкое общественное внимание. Стоит также заметить, что один из разработчиков AlphaGo, Демис Хассабис, был ведущим программистом Theme Park (1994 год) и ведущим программистом ИИ Black & White (2001 год). Игры и современный прогресс ИИ, возможно, имеют некую корреляцию.
Эта статья является постмортемом, отчётом о попытке нашей команды реализации генерирования уровней для Fantasy Raiders с помощью различных методов искусственных нейронных сетей. Раньше генерирование уровней было процессом кодирования знаний разработчика игры с помощью неких вероятностных техник. Однако для Fantasy Raiders мы написали программу, которая могла учиться и генерировать уровни на основании наших данных. Как нам кажется, в результате мы получили всего лишь ключ к решению задачи генерирования уровней, а не общее решение. Чтобы поделиться нашими открытиями с другими разработчиками игр мы хотим подробно рассказать о процессе наших исследований, от начала до конца.
Читать полностью »