Рубрика «нейронные сети» - 20

Привет, в данном примере я хочу показать как можно реализовать сеть Хопфилда для распознавания образов.

Я сам, как и многие в один день решил поинтересоваться программным обучением, ИИ и нейро сетями. Благо в сети есть много разборов и примеров, но все они оперируют изобилием формул функции и если ты не подкован в математике(как я), постараюсь продемонстрировать простой пример сети Хопфилда с использованием языка Golang(GO).
Читать полностью »

В последние несколько лет тема искусственного интеллекта активно обсуждается, так как один из подходов к ее изучению активно набирает обороты среди крупных корпораций. Этот подход – нейросети. Еще недавно, около года назад, это слово можно было услышать отовсюду. Сегодня рассмотрим историю изучения искусственного интеллекта человечеством (оказывается, ему уже около 2000 лет) и сегодняшние реалии.

Откуда взялись нейросети и что происходит сейчас - 1Читать полностью »

В статье мы расскажем о применении свёрточных нейронных сетей для решения практической бизнес-задачи восстановления реалограммы по фотографии полок с товарами. С помощью Tensorflow Object Detection API мы натренируем модель поиска/локализации. Улучшим качество поиска мелких товаров на фотографиях с большим разрешением с помощью плавающего окна и алгоритма подавления немаксимумов. На Keras реализуем классификатор товаров по брендам. Параллельно будем сравнивать подходы и результаты с решениями 4 летней давности. Все данные, использованные в статье, доступны для скачивания, а полностью рабочий код есть на GitHub и оформлен в виде tutorial.
 
Распознавание товаров на полках с помощью нейронных сетей на технологиях Keras и Tensorflow Object Detection API - 1
Читать полностью »

В современном интернете более 630 миллионов сайтов, но лишь 6% из них содержат русскоязычный контент. Языковой барьер – главная проблема распространения знаний между пользователями сети, и мы верим, что решать её нужно не только обучением иностранным языкам, но и с помощью автоматического машинного перевода в браузере.

Сегодня мы расскажем читателям Хабра о двух важных технологических изменениях в переводчике Яндекс.Браузера. Во-первых, перевод выделенных слов и фраз теперь использует гибридную модель, и мы напомним, чем этот подход отличается от применения исключительно нейросетей. Во-вторых, нейронные сети переводчика теперь учитывают структуру веб-страниц, об особенностях которой мы также расскажем под катом.

Как Яндекс применил технологии искусственного интеллекта для перевода веб-страниц - 1
Читать полностью »

Недавно на Kaggle закончилось соревнование iMaterialist Challenge (Furniture), задачей в котором было классифицировать изображения на 128 видов мебели и предметов быта (так называемая fine-grained classification, где классы очень близки друг к другу).

В этой статье я опишу подход, который принес нам с m0rtido третье место, но прежде, чем переходить к сути, предлагаю воспользоваться для решения этой задачи естественной нейросетью в голове и разделить стулья на фото ниже на три класса.

iMaterialist Furniture Challenge или 50 оттенков стульев - 1
Читать полностью »

IGNG — инкрементальный алгоритм растущего нейронного газа - 1

При написании статьи о разработке детектора аномалий я реализовывал один из алгоритмов, который называется "Инкрементальный растущий нейронный газ".
В советской литературе российском сегменте Интернета эта тема освещена достаточно слабо, и нашлась только одна статья, да и то с прикладным применением данного алгоритма.

Итак, что же такое — алгоритм инкрементального растущего нейронного газа?

Читать полностью »

Отчет написан в декабре 2017.

It's not who has the best algorithm that wins. It's who has the most data. Побеждает не тот, у кого лучше алгоритм, а тот, у кого больше данных. Эндрю Нг, преподаватель курса по машинному обучению на Coursera.

If you scale up both the size of the model and the amount of data you train it with, you can learn finer distinctions or more complex features. …These models can typically take a lot more context. Jeff Dean, an engineer helping lead the research at Google. Если увеличить размер модели и дать ей больше данных для обучения, она начнет различать более тонкие и сложные особенности. …Эти модели обычно воспринимают более широкий контекст. Джеф Дин, инженер, помогающий в управлении исследованиями в Google.

Я тестировала Google Translate на одних и тех же текстах в марте и декабре 2011, январе 2016 и декабре 2017 года. Брала одни и те же отрывки на английском, русском, немецком, французском, украинском и польском языках и переводила каждый на остальные пять языков из выборки. Кроме того, в декабре 2017 дополнительно взяла новые тексты и протестировала во всех направлениях перевода. Результаты cross-verification в целом совпали с тенденциями в первоначальной выборке. В итоге получился срез работы переводчика Google за 2011 — 2017 годы, и на основе этих материалов можно сделать выводы об эволюции сервиса и прокомментировать маркетинговые заявления компании (цитаты планируется опубликовать отдельно).Читать полностью »

Всем привет! На этом открытом уроке Артур Кадурин расскажает вам о том, как нейронные сети помогают спасать жизни.

Также предлагаем вам узнать больше о нашем курсе Machine Learning на Дне открытых дверей сегодня в 20:00 по МСК!

Читать полностью »

Google Colaboratory — это не так давно появившийся облачный сервис, направленный на упрощение исследований в области машинного и глубокого обучения. Используя Colaboratory, можно получить удаленный доступ к машине с подключенной видеокартой, причем совершенно бесплатно, что сильно упрощает жизнь, когда приходится обучать глубокие нейросети. Можно сказать, что она является некоторым аналогом гугл-документов для Jupyter Notebook.

В Colaboratory предустановлены Tensorflow и практически все необходимые для работы Python-библиотеки. Если какой-то пакет отсутствует, он с легкостью устанавливается на ходу через pip или apt-get. Но что если необходимо собрать проект из исходников и подключиться к GPU? Оказывается, это может быть не настолько просто, что я выяснил в ходе сборки SSD-Caffe. В этой публикации я дам краткое описание Colaboratory, опишу встреченные трудности и способы их решения, а также приведу несколько полезных приемов.

Весь код доступен в моем Colaboratory Notebook.

Сборка Caffe в Google Colaboratory: бесплатная видеокарта в облаке - 1

Читать полностью »

1. Введение

В наше время для разработки программного обеспечения приходиться приложить не мало усилий. Слишком много времени тратится на то что логично было бы возложить на компьютеры выбор методологи, проектирование, написание технического задания, тестирование все это делает человек и делает очень медленно. Но возможно ли это в принципе? Доктор технических наук Максим Щербаков в своей лекции «Нейронные сети: maths & magic» ответил: «Да, это возможно». Хорошо иметь автоматизированного помощника, который решит задачу просто имея некие критерии и шаблоны при этом платить ему не надо и сделает он это в кратчайшее время, но какие конкретно задачи могут решать нейронные сети в наше время? Развитие машинного обучения в наши дни идет семимильными шагами не сегодня так завтра машины смогут заменить человека в рутинных задачах. Составление технического задания не самое приятное занятие особенно из-за необходимости расписать все крайне подробно и по форме (подробнее в 4 пункте). Каждая компания выбирает определенную методологию разработки программного обеспечения и меняет её крайне редко. Как же быть если для проекта другая методология подходит лучше прежней или нынешняя не подходит вовсе? Логично было бы заменить, но какую выбрать (подробнее в 5 пункте)? Правильное тестирование должно занимать приличное количество времени и людей. Довольно затратно и долго (подробнее в 6 пункте). Нейронная сеть удешевит и ускорит все эти этапы.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js