Рубрика «нейронные сети» - 11

Нейросеть помогла ученым найти геоглиф перуанских индейцев - 1
Иллюстрация: Yamagata University

Японские ученые из Университета Ямагато нашли новый геоглиф на плато Наска в Перу, использовав нейросеть на платформе IBM Watson Machine Learning. Университет Ямагато сообщил об открытии в пресс-релизе 15 ноября.

Геоглифы плато Наска — гигантские изображения людей, птиц, животных растений и геометрических фигур на юге Перу. Считается, что геоглифы Наски были созданы коренными жителями Южной Америки с V века до н.э. по V век н.э. Мнения об их назначении расходятся: некоторые предполагают что геоглифы играют роль указателей, другие — что у них есть обрядовая роль. При создании геоглифов местные жители стирали верхние темные слои камня, под которым был белый песок.

Ученые Университета Ямагато под началом профессора Макато Сакая ищут геоглифы Наски с 2018 года. За год с лишним они обнаружили 142 геоглифа, среди которых были фигуры людей, рыбы, треугольники, линии и т.д. В своих поисках они сочетали наблюдения с воздуха с работой «в полях». Для расширения своего инструментария ученые прибегли к помощи IBM.
Читать полностью »

При обучении нейронной сети на обучающей выборке на выходе нейросети вычисляются два ключевых параметра эффективности обучения — ошибка и точность предсказания. Для этого используются функция потери (loss) и метрика точности. Эти метрики различаются в зависимости от поставленной задачи (классификация или сегментация изображения, детекция объекта, регрессия). В Keras мы можем определить свои собственные функцию потери и метрики точности под свою конкретную задачу. О таких кастомных функциях и пойдет речь в статье. Кому интересно, прошу под кат.
Читать полностью »

Игра InvaderZ генерирует врагов в стиле Space Invaders генетическим алгоритмом - 1
Иллюстрация: Smithsonian Magazine

Пользователь GitHub под ником victorqriberio показал свою версию классической аркады Space Invaders. Его вариант называется InvaderZ. В нем всё так же нужно отстреливать появляющихся вверху экрана пришельцев, но каждая волна «вторженцев» уникальна. Victorqriberio использовал генетический алгоритм, который изменяет форму каждого нового пришельца.

Читать полностью »

Нейронный машинные перевод (НМП, англ. Neural Machine Translation, NMT) развивается очень быстро. Сегодня, чтобы собрать свой переводчик, не нужно иметь два высших образования. Но чтобы обучить модель, нужен большой параллельный корпус (корпус, в котором предложению на исходном языке сопоставлен его перевод). На практике речь идет хотя бы об одном миллионе пар предложений. Есть даже отдельная большая область НМП, исследующая методы обучения языковых пар с малым количеством данных в электронном виде (англ. Low Resource NMT).

Мы собираем чувашско-русский корпус и параллельно смотрим, что можно сделать с имеющимся объемом данных. В этом примере использовали корпус из 90 000 пар предложений. Самый хороший результат на данный момент дал метод передачи знания (англ. Transfer Learning), о нем и пойдет речь в статье. Цель статьи — дать практический пример реализации, который легко можно было бы воспроизвести.Читать полностью »

Julia и нейронные сети: Flux - 1
Прошло чуть больше года, с тех пор как MIT объявил о релизе высокопроизводительного языка общего назначения Julia. С тех пор язык набирает популярность: он используется в более чем 1500 университетах (в некоторых преподается в качестве первого ЯП), а области применения охватывают от медицинской диагностики и планирования космических миссий до таких насущных проблем, как оптимизация трафика школьных автобусов.

Одним из ключевым полей деятельности многих проектов, как не трудно догадаться, является машинное обучение, для которого на Julia есть множество мощных инструментов, а недавно вышел в свет довольно интересный проект — Система вероятностного программирования общего назначения "GEN".

Сегодня же мы обратим внимание на, как понятно из названия, пакет Flux, предоставляющий всю мощь нейронных сетей. Постараемся пройти путь от обработки и исследования наборов изображений до обученной нейронной сети, чтобы получить полноценный классификатор!

Читать полностью »

Конспект по «Машинному обучению». Математический анализ. Градиентный спуск - 1

Вспомним математический анализ

Непрерывность функции и производная

Пусть $inline$E subseteq mathbb{R}$inline$, $inline$a$inline$ — предельная точка множества $inline$E$inline$ (т.е. $inline$a in E, forall varepsilon > 0 spacespace |(a - varepsilon, a + varepsilon) cap E| = infty$inline$), $inline$f colon E to mathbb{R}$inline$.

Определение 1 (предел функции по Коши):

Функция $inline$f colon E to mathbb{R}$inline$ стремится к $inline$A$inline$ при $inline$x$inline$, стремящемся к $inline$a$inline$, если

$$display$$forall varepsilon > 0 spacespace exists delta > 0 spacespace forall x in E spacespace (0 < |x- a| < delta Rightarrow |f(x)- A| < varepsilon).$$display$$

Обозначение: $inline$limlimits_{E ni x to a}f(x) = A$inline$.
Читать полностью »

Реалистичная анимация персонажей в играх с помощью ИИ - 1

Разработчиками из Эдинбургского Университета представлен новый алгоритм для создания реалистичных движений персонажей в играх. Обученная на Motion Capture траекториях нейросеть пытается копировать движения реальных людей, но при этом адаптирует их под персонажей видеоигр.

Одна нейросеть способна управлять сразу несколькими действиями в игре. Открывание дверей, перенос предметов, использование мебели. При этом она динамично изменяет положения ног и рук, чтобы персонаж мог реалистично держать ящики разного размера, садиться на разные по размеру стулья, а также пролезать в проходы разной высоты.

Читать полностью »

Привет! Меня зовут Евгений Кашин, и я работаю в лаборатории машинного интеллекта Яндекса. Недавно мы запустили игру, в которой пользователи соревнуются с Алисой в угадывании стран по фотографиям.

Как действуют люди — понятно: они узнают места, которые видели в путешествиях или в кино, полагаются на эрудицию и здравый смысл. У нейросети ничего этого нет. Нам стало интересно, какие детали на снимках подсказывают ей ответ. Мы провели исследование, результатами которого сегодня поделимся с Хабром.

Этот пост будет интересен как специалистам в области компьютерного зрения, так и всем, кто хотел бы заглянуть внутрь «искусственного интеллекта» и понять логику его работы.

Как Алиса узнаёт страны по фотографиям. Исследование Яндекса - 1
Читать полностью »

image
Источник: Wikimedia

Нейросеть KataGo решила задачу, которая считается самой сложной в японской игре Го. Решение опубликовала пользовательница под ником Cassandra на форуме 19х19. KataGo изменила 140-й ход 177-ходового решения, созданного немецкими исследователями, и пришла к неожиданному итогу: победа белых с перевесом в два очка вместо победы черных с перевесом в пять камней.

Читать полностью »

Алгоритм, разработанный учеными из Университета Сан-Франциско (UCSF), ищет микроскопические кровоизлияния в мозг и прочие нарушения лучше специалистов-радиологов, сообщает Berkley News.
image
Источник: USFC

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js