Рубрика «нейронная сеть» - 2

image

Всем привет!

На повестке дня интересная тема — будем создавать с нуля собственную нейронную сеть на Python. В ее основе обойдемся без сложных библиотек (TensorFlow и Keras).

Перед тем как углубиться, рекомендую освежить знания по искусственным нейронным сетям и подписаться на мой телеграм-канал (@dataisopen), чтобы не пропустить интересных статей.

Основное, о чем нужно знать — искусственная нейронная сеть может быть представлена в виде блоков/кружков (искусственных нейронов), имеющие между собой, в определенном направлении, связи. В работе биологической нейронной сети от входов сети к выходам передается электрический сигнал (в процессе прохода он может изменяться).

image

Электрические сигналы в связях искусственной нейронной сети — это числа. Ко входам нашей искусственной нейронной сети мы будем подавать рандомные числа (которые бы символизировали величины электрического сигнала, если бы он был). Эти числа, продвигаясь по сети будут неким образом меняться. На выходе мы получим ответ нашей сети в виде какого-то числа.

image

Искусственный нейрон

Для того, чтобы нам понять как работает нейронная сеть изнутри — внимательно изучим модель искусственного нейрона:Читать полностью »

Здравствуйте, уважаемые читатели. О нейронных сетях написано и сказано очень много, преимущественно о том, как и для чего их можно применить. При этом как-то не очень много внимания уделяется двум важным вопросам: а) как нейронную сеть упростить и быстро вычислить (одно вычисление экспоненты реализуется библиотечными функциями языков программирования, обычно, не менее чем за 15-20 процессорных инструкций), б) какова, хотя бы отчасти, логика работы построенной сети – в самом деле, получаемые после обучении сети огромные матрицы значений весов и смещений как-то не очень помогают понять закономерности, которые эта сеть нашла (они остаются скрытыми и задача их определить – задача вербализации – иногда очень важна). Я расскажу об одном своем подходе к решению этих вопросов для обычных нейронных сетей прямого распространения, при этом постараюсь обойтись минимумом математики.
Читать полностью »

Здравствуйте, я школьник 11 классов, интересуюсь программированием, около-IT тематикой.

Пишу данный пост с целью поделиться своим проектом, занявшим 10 часов моей жизни на выходных и выполненным с целью понять возможности современных методов анализа данных. Публикация может рассматриваться как пример удачной реализации для людей, несведущих в этой области знания, а так же как просьба указать мои ошибки для людей, соответственно, сведущих.
Читать полностью »

Привет! Представляю вашему вниманию перевод статьи «Train your first neural network: basic classification».

Это руководство по обучению модели нейронной сети для классификации изображений одежды, таких как кроссовки и рубашки. Для создания нейронной сети используем python и библиотеку TensorFlow.
Читать полностью »

Глубокие нейронные сети привели к прорыву во множестве задач распознавания образов, таких как компьютерное зрение и распознавание голоса. Сверточная нейронная сеть один из популярных видов нейронных сетей.

В своей основе сверточную нейронную сеть можно рассматривать как нейронную сеть, использующую множество идентичных копий одного и того же нейрона. Это позволяет сети иметь ограниченное число параметров при вычислении больших моделей.

Принцип работы свёрточной нейронной сети. Просто о сложном - 1
2D Свёрточная нейронная сеть
Читать полностью »

Нейронные сети совершили революцию в области распознавания образов, но из-за неочевидной интерпретируемости принципа работы, их не используют в таких областях, как медицина и оценка рисков. Требуется наглядное представление работы сети, которое сделает её не чёрным ящиком, а хотя бы «полупрозрачным». Cristopher Olah, в работе «Neural Networks, Manifolds, and Topology» наглядно показал принципы работы нейронной сети и связал их с математической теорией топологии и многообразия, которая послужила основой для данной статьи. Для демонстрации работы нейронной сети используются низкоразмерные глубокие нейронные сети.

Понять поведение глубоких нейронных сетей в целом нетривиальная задача. Проще исследовать низкоразмерные глубокие нейронные сети — сети, в которых есть только несколько нейронов в каждом слое. Для низкоразмерных сетей можно создавать визуализацию, чтобы понять поведение и обучение таких сетей. Эта перспектива позволит получить более глубокое понимание о поведении нейронных сетей и наблюдать связь, объединяющую нейронные сети с областью математики, называемой топологией.

Из этого вытекает ряд интересных вещей, в том числе фундаментальные нижние границы сложности нейронной сети, способной классифицировать определенные наборы данных.

Рассмотрим принцип работы сети на примере
Читать полностью »

1. Введение

В наше время для разработки программного обеспечения приходиться приложить не мало усилий. Слишком много времени тратится на то что логично было бы возложить на компьютеры выбор методологи, проектирование, написание технического задания, тестирование все это делает человек и делает очень медленно. Но возможно ли это в принципе? Доктор технических наук Максим Щербаков в своей лекции «Нейронные сети: maths & magic» ответил: «Да, это возможно». Хорошо иметь автоматизированного помощника, который решит задачу просто имея некие критерии и шаблоны при этом платить ему не надо и сделает он это в кратчайшее время, но какие конкретно задачи могут решать нейронные сети в наше время? Развитие машинного обучения в наши дни идет семимильными шагами не сегодня так завтра машины смогут заменить человека в рутинных задачах. Составление технического задания не самое приятное занятие особенно из-за необходимости расписать все крайне подробно и по форме (подробнее в 4 пункте). Каждая компания выбирает определенную методологию разработки программного обеспечения и меняет её крайне редко. Как же быть если для проекта другая методология подходит лучше прежней или нынешняя не подходит вовсе? Логично было бы заменить, но какую выбрать (подробнее в 5 пункте)? Правильное тестирование должно занимать приличное количество времени и людей. Довольно затратно и долго (подробнее в 6 пункте). Нейронная сеть удешевит и ускорит все эти этапы.
Читать полностью »

Разработка AI для пошаговой игры на Node.js (часть 1) - 1
Всем привет!
Прошло целых полтора года с момента написания моей первой статьи на Хабре. С тех пор проект FOTM претерпел ряд изменений. В начале пройдёмся вкратце по всем модернизациям, а затем перейдём к детальному разбору основной фичи — AI.Читать полностью »

В этой статье не будет ни одной строчки кода, тут будет просто теория метода
обучения нейронных сетей, который я разрабатываю последние пол-года. Реализацию метода планирую в следующей статье.

Перспективы безытеративного обучения нейронных сетей очень велики, это, потенциально, самый быстрый способ обучения НС. Начать цикл работ по безытеративному обучению я хочу с самого простого случая(где упрощать уже некуда). А именно, с однослойной сети прямого распространения с линейной активационной функцией, взвешенного сумматора.Читать полностью »

image

Создать управляемый в реальном времени контроллер для виртуальных персонажей — сложная задача даже при наличии большого количества доступных высококачественных данных захвата движения.

Частично это связано с тем, что к контроллеру персонажей предъявляется масса требований, и только при соответствии им всем он может быть полезным. Контроллер должен уметь учиться на больших объемах данных, но при этом не требовать большого количества ручной предварительной обработки данных, а также должны максимально быстро работать и не требовать больших объемов памяти.

И хотя в этой области уже достигнут некоторый прогресс, почти все существующие подходы соответствуют одному или нескольким из этих требований, но не удовлетворяют им всем. Кроме того, если проектируемая местность будет иметь рельеф с большим количеством препятствий, это еще серьезнее усложняет дело. Персонажу приходится менять темп движения, прыгать, уклоняться или взбираться на возвышенности, следуя командам пользователя.

При таком сценарии нужна система, которая может учиться на основе очень большого количества данных о движении, поскольку существует очень много разных комбинаций траекторий движения и соответствующих геометрий.

Разработки в области глубинного обучения нейронных сетей потенциально могут решить эту проблему: они могут учиться на больших наборах данных, и однажды обученные, они занимают мало памяти и быстро выполняют поставленные задачи. Остается открытым вопрос о том, как именно нейронные сети лучше всего применять к данным движения таким образом, чтобы получать высококачественный результат в режиме реального времени с минимальной обработкой данных.

Исследователи из Эдинбургского университета разработали новую систему обучения, называемую фазово-функциональной нейронной сетью (PFNN), которая использует машинное обучение для анимации персонажей в видеоиграх и других приложениях. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js