Рубрика «natural language processing» - 4

Lingtrain cover

Два года назад я начал делать небольшой проект, связанный с обработкой текстов на иностранных языках. Он постепенно развивался и стал использоваться лингвистами в НКРЯ, а энтузиасты сохранения малых языков используют его для расширения своих параллельных корпусов.

Сегодня же я расскажу как при помощи него создать полноценную параллельную книгу на разных языках. Книга будет красиво сверстана в PDF, иметь содержание, обложку и две выровненные по смыслу колонки текста. Такие книги служат отличным подспорьем при изучении иностранного языка. Найти их, однако, не так просто, и скорее всего это будут книги для детей или избранная классика. Полный пример готовой книги можно посмотреть здесь. Под капотом у приложения NLP модели, поддерживаемых языков более ста.

Проект открытый и любой может в нем поучаствовать. Во многом благодаря сообществу и вашему участию он за несколько лет дошел до сегодняшнего дня. В общем штука годная, давайте уже посмотрим, что к чему.

Читать полностью »

hero_image

В нашей прошлой статье мы ускорили наши модели в 10 раз, добавили новые высококачественные голоса и управление с помощью SSML, возможность генерировать аудио с разной частотой дискретизации и много других фишек.

В этот раз мы добавили:

  • 1 высококачественный голос на русском языке (eugeny);
  • Синтез на 20 языках, 174 голоса;
  • В список языков входят 5 языков народов СНГ: калмыцкий, русский, татарский, узбекский и украинский;
  • В список языков входят 5 вариаций на тему романо-германских языков: английский, индийский английский, испанский, немецкий, французский;
  • Также в список языков входят 10 языков народов Индии;
  • Новую значительно улучшенную модель для простановки ударений и буквы ё со словарем в 4 миллиона слов и точностью 100% (но естественно с рядом оговорок);
  • Все модели наследуют все "фишки" прошлого релиза, кроме автоматической простановки ударений для языков отличных от русского;

Пока улучшение интерфейсов мы отложили на некоторое время. Ускорить модели еще в 3+ раза мы тоже смогли, но пока с потерей качества, что не позволило нам обновить их прямо в этом релизе.

Попробовать модель как обычно можно в нашем репозитории и в колабе.

Читать полностью »

Энкодер предложений (sentence encoder) – это модель, которая сопоставляет коротким текстам векторы в многомерном пространстве, причём так, что у текстов, похожих по смыслу, и векторы тоже похожи. Обычно для этой цели используются нейросети, а полученные векторы называются эмбеддингами. Они полезны для кучи задач, например, few-shot классификации текстов, семантического поиска, или оценки качества перефразирования.

Читать полностью »

Насколько естественен естественный язык? Представляем датасет RuCoLA - 1

В последние годы в области NLP произошла настоящая революция: огромные нейросети, предобученные на сотнях гигабайт текстов, бьют все известные рекорды качества. Но обладают ли такие нейросети чутьём на «естественность» текста, которое есть у носителей языка? Оценка предложения по внутреннему чутью в лингвистике получила название приемлемости; умение давать подобную оценку — ещё один шаг на пути к общему пониманию языка. Чтобы узнать, насколько хорошо нейросети для русского языка справляются с этой задачей, мы публикуем RuCoLA (Russian Corpus of Linguistic Acceptability) — датасет русскоязычных предложений, размеченных по бинарной шкале приемлемости. Это совместный труд команды исследователей и NLP-разработчиков из SberDevices, ABBYY, Yandex Research, Huawei Noah’s Ark Lab и Факультета компьютерных наук ВШЭ. Также мы открываем лидерборд на данных RuCoLA, чтобы любой желающий мог проверить способности своих моделей или поучаствовать в развитии методов для оценки приемлемости.
Читать полностью »

Реально ли привлечь Home Credit Bank за нарушение лицензии открытого проекта? - 1

Недавно натолкнулся на статью в корпоративном блоге Home Credit Bank на Хабре. Там есть такая строка:

Для исправления грамматики (знаки препинания) используется BERT-модель, описанная здесь.

Читать полностью »

hero_image

В нашей прошлой статье про синтез речи мы дали много обещаний: убрать детские болячки, радикально ускорить синтез еще в 10 раз, добавить новые "фишечки", радикально улучшить качество.

Сейчас, вложив огромное количество работы, мы наконец готовы поделиться с сообществом своими успехами:

  • Снизили размер модели в 2 раза;
  • Научили наши модели делать паузы;
  • Добавили один высококачественный голос (и бесконечное число случайных);
  • Ускорили наши модели где-то примерно в 10 раз (!);
  • Упаковали всех спикеров одного языка в одну модель;
  • Наши модели теперь могут принимать на вход даже целые абзацы текста;
  • Добавили функции контроля скорости и высоты речи через SSML;
  • Наш синтез работает сразу в трех частотах дискретизации на выбор — 8, 24 и 48 килогерц;
  • Решили детские проблемы наших моделей: нестабильность и пропуск слов, и добавили флаги для контроля ударения;

Это по-настоящему уникальное и прорывное достижение и мы не собираемся останавливаться. В ближайшее время мы добавим большое количество моделей на разных языках и напишем целый ряд публикаций на эту и смежные темы, а также продолжим делать наши модели лучше (например, еще в 2-5 раз быстрее).

Попробовать модель как обычно можно в нашем репозитории и в колабе.

Читать полностью »

Источник: https://commons.wikimedia.org/wiki/File:Edsger_Dijkstra_1994.jpg
Источник: https://commons.wikimedia.org/wiki/File:Edsger_Dijkstra_1994.jpg

От переводчиков. Хотя Эдсгер Дейкстра — одна из главных личностей в истории IT, эта его коротенькая публикация ранее не попадала на Хабр, да и сами мы узнали о ней лишь благодаря докладуЧитать полностью »

Многие из нас ежедневно пользуются поисковыми системами, голосовыми помощниками и переводчиками текстов. Появление этих технологий стало возможным благодаря компьютерной лингвистике — области искусственного интеллекта, которая занимается описанием естественных языков при помощи математических моделей. Рассказываем, что такое компьютерная лингвистика и обработка естественного языка, какие задачи они решают и как помогают расширять возможности людей с инвалидностью. 

Благодарим Елену Герасимову, руководителя отдела дополнительного профессионального образования в Нетологии, ранее руководившую направлением «Читать полностью »

image

Сейчас для всех желающих доступны два наших сервиса для распознавания речи:

  • Бот в телеграме для коротких и не очень длинных аудио (мы не стали обходить ограничения телеграма, основная задача бота — распознавать голосовые сообщения);
  • Сервис audio-v-text.silero.ai для более длинных аудио, в котором можно скачать отчет в виде эксельки.

Сервис написан нашими собственными силами, работает на нашем собственном движке распознавания речи, без проксирования во внешние сервисы и с минимально возможным количеством зависимостей. В случае нарушения связности возможен оперативный перевод хостинга в другие регионы.

Мы провели и продолжаем работу над ошибками и внесли ряд улучшений для пользователей, о которых мы бы хотели рассказать.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js