Рубрика «natural language processing» - 17

Введение

Каждый, кто пришел в этот мир, проходил через путь познания языка. При этом человек обучается языку отнюдь не по правилам или грамматике. Даже, более того, каждый человек, будучи еще ребенком, сначала учит такое странное явление как язык, а уже позднее, с возрастом, начинает учить его правила (в садике и школе). Это объясняет забавный факт, каждый, кто изучает иностранный язык в зрелом возрасте, когда он уже менее склонен к изучению новых языков, знает о предмете своего изучения больше, чем большинство носителей этого языка.

Это простое наблюдение дает возможность предполагать, что для понимания языка вовсе не нужно иметь знания о нем. Достаточно лишь эмпирии (опыта), который можно почерпнуть от окружающих. Но именно об этом забывают практически все современные НЛП библиотеки, пытаясь построить все-обемлящую языковую модель.

Для более четкого понимания представьте себя слепым и глухим. И, даже родись в таком состоянии, вы бы могли взаимодействовать с миром и освоить язык. Само собой, что ваше представление о мире было бы иным, нежели у всех вокруг. Но вы могли бы все таким же образом взаимодействовать с миром. Некому бы было объяснить Вам что происходит и что такое язык ив се же, как то, тактильно анализирую шрифт Брайля Вы бы понемного сдвинулись с мертвой точки.

А это значит, что для понимания сообщения на каком-либо языке нам не нужно ничего, кроме самого сообщения. При условии, что это сообщение достаточно большое. Именно эта идея и положена в основу библиотеки под названием AIF. За деталями прошу пожаловать под кат.
Читать полностью »

Привет, меня зовут Наталья, я работаю в Яндексе разработчиком в группе извлечения фактов. Весной мы рассказали о том, что такое Томита-парсер и для чего он используется в Яндексе. А уже этой осенью исходники парсера будут выложены в открытый доступ.

В предыдущем посте мы пообещали рассказать, как пользоваться парсером и о синтаксисе его внутреннего языка. Именно этому и посвящен мой сегодняшний рассказ.

Как использовать Томита парсер в своих проектах. Практический курс

Прочитав этот пост, вы узнаете, как составляются словари и грамматики для Томиты, а также, как извлекать с их помощью факты из текстов на естественном языке. Та же информация доступна в формате небольшого видеокурса.
Читать полностью »

8-я Российская летняя школа по информационному поиску (RuSSIR 2014) пройдет в августе в Нижнем Новгороде. Традиционно сильная научная программа, веселые вечеринки, спортивные состязания и речные прогулки «после уроков», уникальное место встречи ученых с мировым именем, студентов и представителей интернет-индустрии. Дополнительная тема этого года – пользовательские интерфейсы и визуализация данных. Участие в школе бесплатное, заявки принимаются до конца июня.

image

Читать полностью »

В докладе рассказывается о том, как мы извлекаем сущности (например, имена людей и географические названия) из текстов и запросов. А также об извлечении фактов, т.е. связей между объектами. Мы рассмотрим несколько подходов к решению этих задач: формулирование правил, составление словарей всевозможных объектов, машинное обучение.

Лекция рассчитана на старшеклассников — студентов Малого ШАДа, но и взрослые смогут с ее помощью восполнить некоторые пробелы.

Читать полностью »

Natural Language Processing — область, которая становится все популярнее и популярнее в Росссии. Но отдельных ресурсов, посвященных этой теме, в рунете практически нет. Полгода назад на Хабре представляли NLPub, каталог ресурсов по компьютерной лингвистике. Но что делать, если хочешь читать новости? Можно попробовать начать с блога mathlingvo.ru

image

Читать полностью »

В далеком 2009 году на хабре уже была статья "Кузявые ли бутявки.." про pymorphy — морфологический анализатор для русского языка на Python (штуковину, которая умеет склонять слова, сообщать информацию о части речи, падеже и т.д.)

В 2012м я начал потихоньку делать pymorphy2 (github, bitbucket) — думаю, самое время представить эту библиотеку тут: pymorphy2 может работать в сотни раз быстрее, чем pymorphy (втч без использования C/C++ расширений) и при этом требовать меньше памяти; там лучше словари, лучше качество разбора, лучше поддержка буквы ё, проще установка и более «честный» API. Из негатива — не все возможности pymorphy сейчас реализованы в pymorphy2.

Эта статья о том, как pymorphy2 создавался (иногда с довольно скучными техническими подробностями), и сколько глупостей я при этом наделал; если хочется просто все попробовать, то можно почитать документацию.

Читать полностью »

Можешь выбрать подходящую к заголовку поста картинку?

«Он видел их семью своими глазами»

Тогда научи робота! Он тоже хочет.

Команда проекта Открытый корпус просит хабралюдей помочь разметить свободно доступный (CC-BY-SA) корпус текстов. Под катом мы расскажем о том, что такое корпус, зачем он нужен, как обстоят дела с корпусами в России и за рубежом, почему так плохо и какой у нас план.

Читать полностью »

Последнее время на Хабре зачастили статьи про обработку естественного языка.
И так уж совпало, что последнее время я работаю в этой области.
Был очень хорошо освещен sentiment analysis, и теггер частей речи pymorphy.
Но мне хотелось бы рассказать, какие средства для NLP использовал я, и что я нашел нового, чего здесь еще не было
Читать полностью »

Обучаем компьютер чувствам (sentiment analysis по русски)

Sentiment analysis (по-русски, анализ тональности) — это область компьютерной лингвистики, которая занимается изучением мнений и эмоций в текстовых документах. Недавно на хабре появилась статья про использование машинного обучения для анализа тональности, однако, она была настолько плохо составлена, что я решил написать свою версию. Итак, в этой статье я постараюсь доступно объяснить, что такое анализ тональности, и как реализовать подобную систему для русского языка.
Читать полностью »

Парсим русский язык
В прошлый раз (почти год назад) мы определяли части речи в русском тексте, производили морфологический анализ слов. В этой статье мы пойдем на уровень выше, к синтаксическому анализу целых предложений.

Наша цель заключается в создании парсера русского языка, т.е. программы, которая на вход бы принимала произвольный текст, а на выходе выдавала бы его синтаксическую структуру. Например, так:

"Мама мыла раму":

(предложение
    (именная гр. (сущ мама))
    (глаг. гр. (глаг мыла)
        (именная гр. (сущ раму)))
    (. .)))

Это называется синтаксическим деревом предложения. В графическом виде его можно представить следующим образом (в упрощенном виде):
Парсим русский язык
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js