Рубрика «многообразие»

Нейронные сети совершили революцию в области распознавания образов, но из-за неочевидной интерпретируемости принципа работы, их не используют в таких областях, как медицина и оценка рисков. Требуется наглядное представление работы сети, которое сделает её не чёрным ящиком, а хотя бы «полупрозрачным». Cristopher Olah, в работе «Neural Networks, Manifolds, and Topology» наглядно показал принципы работы нейронной сети и связал их с математической теорией топологии и многообразия, которая послужила основой для данной статьи. Для демонстрации работы нейронной сети используются низкоразмерные глубокие нейронные сети.

Понять поведение глубоких нейронных сетей в целом нетривиальная задача. Проще исследовать низкоразмерные глубокие нейронные сети — сети, в которых есть только несколько нейронов в каждом слое. Для низкоразмерных сетей можно создавать визуализацию, чтобы понять поведение и обучение таких сетей. Эта перспектива позволит получить более глубокое понимание о поведении нейронных сетей и наблюдать связь, объединяющую нейронные сети с областью математики, называемой топологией.

Из этого вытекает ряд интересных вещей, в том числе фундаментальные нижние границы сложности нейронной сети, способной классифицировать определенные наборы данных.

Рассмотрим принцип работы сети на примере
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js