Рубрика «многочлены»

Мы, наконец, узнали, насколько большим должно быть множество чисел, чтобы в нём гарантировано содержалась закономерность под названием «многочленная прогрессия»

Математики нашли закономерность, разбираясь в том, как избежать её появления - 1

Некоторые закономерности в математике настолько редкие, что их можно искать всю жизнь и не найти. Другие же встречаются так часто, что их, кажется, невозможно избежать.

Новое доказательство, представленное Сарой Пилюс из Оксфордского университета, показывает, что одна численная закономерность особенно важного типа, по сути, является неизбежной: она гарантированно обнаружится в любой достаточно большой коллекции чисел, вне зависимости от того, как их выбирают.

«Этим закономерностям присуща своего рода неразрушимость», — сказал Теренс Тао из Калифорнийского университета в Лос-Анджелесе.
Читать полностью »

image

Значимость простых чисел, как в повседневном применении, так и во всех отраслях математики, невозможно переоценить. Мы спокойно полагаемся на их особые свойства, используя их как фундамент бесчисленного количества элементов нашего общества, ведь они являются неделимой частью самой ткани природы. Простые числа, устойчивые к любому делению на множители, часто называют «атомами» мира математики. Карл Саган сказал о них так:

Очень важен статус простых чисел как фундаментальных строительных блоков всех чисел, которые сами являются строительными блоками нашего понимания Вселенной.

В природе и в нашей жизни простые числа используются повсюду: цикады выстраивают по ним свои жизненные циклы, часовщики применяют их для вычисления тиканья, а в авиационных двигателях с их помощью балансируется частота воздушных импульсов. Однако все эти области применения бледнеют на фоне факта, знакомого каждому криптографу: простые числа находятся в самом сердце современной компьютерной безопасности, то есть они напрямую несут ответственность за защиту всего. Видите замок в адресной строке браузера? Да, это значит, что используется двухключевое «рукопожатие», основанное на простых числах. Как защищается при покупках ваша кредитная карта? Тоже при помощи криптографии на основе простых чисел.

Однако несмотря на то, что мы постоянно полагаемся на их уникальные свойства, простые числа оставались для нас неуловимыми. На протяжении всей истории математики величайшие умы пытались доказать теорему о предсказании чисел, являющихся простыми, или о том, как далеко друг от друга они должны располагаться.Читать полностью »

Многочлены – это не просто упражнения в абстрактных материях. Они прекрасно подходят для выявления структур в неожиданных местах.

Как правильно раскрашивать многочлены - 1

В 2015 году бывший поэт, ставший математиком, Джун Хо помог решить задачу, сформулированную около 50 лет назад. Она была связана со сложными математическими объектами, "матроидами", и графами (комбинациями точек и отрезков). А ещё она была связана с многочленами – знакомыми нам с уроков математики выражениями, состоящими из суммы переменных, возведённых в различные степени.

В какой-то момент в школе вы, наверное, проходили раскрытие скобок у многочленов. К примеру, вы можете помнить, что x2 + 2xy + y2 = (x + y)2. Удобный алгебраический трюк, но где он может пригодиться? Оказывается, что многочлены отлично помогают выявлять скрытые структуры – и в своём доказательстве Хо активно использовал этот факт. Вот простая загадка, иллюстрирующая это.
Читать полностью »

Математики доказали, что многочлены не помогут взломать RSA - 1

Недавно в журнале Quanta вышел материал, в котором автор рассказывал про удивительный с точки зрения неискушенных читателей феномен, доказанный математиками. Его суть в том, что почти все многочлены определенного типа — неприводимые, то есть не поддаются разложению. Это доказательство применяется во многих областях чистой математики. Но также это хорошая новость для одного из столпов современной жизни — цифрового шифрования.

Для надежного хранения цифровой информации широко используется шифрование с помощью алгоритма RSA. Это прокачанная версия схемы, которую может придумать даже семиклассник, чтобы обмениваться сообщениями с друзьями: каждой букве присваивается свой номер, который умножается на некий секретный, заранее оговоренный ключ. Чтобы расшифровать сообщение, достаточно просто поделить его на секретный ключ.

RSA-шифрование работает схожим образом. Приведем сильно упрощенное объяснение. Пользователь придумывает сообщение и выполняет над ним определенные математические операции, включающие в себя умножение на очень большое число (длиной в несколько сотен цифр). Единственный способ расшифровать сообщение — найти простые множители полученного результата*.

*

Простые множители какого-либо числа — это простые числа, которые необходимо перемножить, чтобы получилось это число. Так, для числа 12 это 2*2*3, а для числа 495 это 3, 3, 5 и 11.

Безопасность RSA-шифрования базируется на том факте, что математике неизвестны быстрые способы найти простые множители очень больших чисел. И если зашифрованное сообщение предназначалось не вам, и у вас нет ключа для его расшифровки, то попытки найти этот ключ могут занять добрую тысячу лет. Причем это справедливо и для самых современных компьютеров, с помощью которых все равно не удастся подобрать правильные простые множители.

Но есть и обходной путь.Читать полностью »

Сто лет назад великий математик Давид Гильберт задал исследовательский вопрос из области чистой математики. Недавние разработки теории оптимизации выносят работу Гильберта в мир робомобилей

Классическая математическая задача проявляет себя в реальном мире - 1

Задолго до того, как роботы умели бегать, а автомобили – водить себя сами, математики обдумывали простой математический вопрос. Наконец, они разобрались с ним и отложили в сторону – не имея возможности знать, что объект их математического любопытства проявит себя в машинах далёкого будущего.

Будущее наступило. В результате новой работы Амира Али Ахмади и Анируды Маджумара из Принстонского университета, классическая задача из чистой математики готова предоставить железное доказательство того, что автоматические дроны и робомобили не будут врезаться в деревья или выруливать на встречную полосу.
Читать полностью »

Вычисление значения многочлена в точке является одной из простейших классических задач программирования.
При проведении различного рода вычислений часто приходится определять значения многочленов при заданных значениях аргументов. Часто приближенное вычисление функций сводится к вычислению аппроксимирующих многочленов.
Рядового читателя Хабрахабр нельзя назвать неискушенным в применении всяческих извращений. Каждый второй скажет, что многочлен надо вычислять по правилу Горнера. Но всегда есть маленькое «но», всегда ли схема Горнера является самой эффективной?

Вычисление значения многочлена. Все ли тривиально в этом вопросе? - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js