Рубрика «мнк»

Итак, очередная статья из цикла «математика на пальцах». Сегодня мы продолжим разговор о методах наименьших квадратов, но на сей раз с точки зрения программиста. Это очередная статья в серии, но она стоит особняком, так как вообще не требует никаких знаний математики. Статья задумывалась как введение в теорию, поэтому из базовых навыков она требует умения включить компьютер и написать пять строк кода. Разумеется, на этой статье я не остановлюсь, и в ближайшее же время опубликую продолжение. Если сумею найти достаточно времени, то напишу книгу из этого материала. Целевая публика — программисты, так что хабр подходящее место для обкатки. Я в целом не люблю писать формулы, и я очень люблю учиться на примерах, мне кажется, что это очень важно — не просто смотреть на закорючки на школьной доске, но всё пробовать на зуб.

Итак, начнём. Давайте представим, что у меня есть триангулированная поверхность со сканом моего лица (на картинке слева). Что мне нужно сделать, чтобы усилить характерные черты, превратив эту поверхность в гротескную маску?

Методы наименьших квадратов без слёз и боли - 1

В данном конкретном случае я решаю эллиптическое дифференциальное уравнение, носящее имя Симеона Деми Пуассона. Товарищи программисты, давайте сыграем в игру: прикиньте, сколько строк в C++ коде, его решающем? Сторонние библиотеки вызывать нельзя, у нас в распоряжении только голый компилятор. Ответ под катом.

Читать полностью »

Полтора года назад я опубликовал статью «Математика на пальцах: методы наименьших квадратов», которая получила весьма приличный отклик, который, в том числе, заключался в том, что я предложил нарисовать сову. Ну, раз сова, значит, нужно объяснять ещё раз. Через неделю ровно на эту тему я начну читать несколько лекций студентам-геологам; пользуюсь случаем, излагаю тут (адаптированные) основные тезисы в качестве черновика. Моей основной целью не является дать готовый рецепт из книги о вкусной и здоровой пищи, но рассказать, почему он таков и что ещё находится в соответствующем разделе, ведь связи между разными разделами математики — это самое интересное!

На данный момент я предполагаю разбить текст на три статьи:

  • 1. Ликбез по теории вероятностей и как она связана с методами наименьших квадратов
  • 2. Наименьшие квадраты, простейший случай, и как их программировать
  • 3. Нелинейные задачи

Я зайду к наименьшим квадратам чуть сбоку, через принцип максимума правдоподобности, а он требует минимального ориентирования в теории вероятностей. Данный текст рассчитан на третий курс нашего факультета геологии, что означает, (с точки зрения задействованного матаппарата!) что заинтересованный старшеклассник при соответствующем усердии должен суметь в нём разобраться.

Насколько обоснован теорвер или верите ли вы в теорию эволюции?

Однажды мне задали вопрос, верю ли я в теорию эволюции. Прямо сейчас сделайте паузу, подумайте, как вы на него ответите.

В трёх статьях о наименьших квадратах: ликбез по теории вероятностей - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js