Рубрика «mnist»

Нейронные сети (инференс MNIST) на «3-центовом» микроконтроллере - 1


Вдохновившись на удивление высокой производительностью нейронных сетей и обучением с учётом квантования на микроконтроллере CH32V003, я захотел выяснить, как далеко эту идею можно развить. Насколько можно сжать нейронную сеть с сохранением высокой точности тестов на датасете MNIST? Когда речь идёт о крайне дешёвых микроконтроллерах, сложно предположить что-то более подходящее, чем 8-битные Padauk.

Эти устройства оптимизированы под простейшие и самые дешёвые приложения из доступных. Самая мелкая модель серии, PMS150C, оснащена однократно программируемой памятью в 1024 13-битных слова и 64 байтами RAM — на порядок меньше, чем в CH32V003. Кроме того, эта модель в противоположность намного более мощному набору инструкций RISC-V содержит коммерческий регистр-аккумулятор на основе 8-битной архитектуры.

Возможно ли реализовать механизм инференса MNIST, способный классифицировать рукописные числа, также и на PMS150C?Читать полностью »

Принципиально новый метод позволяет тренировать ИИ практически без данных - 1
Мифический носорогоединорог. MS TECH / PIXABAY

Обучение «менее чем с одной» попытки помогает модели идентифицировать больше объектов, чем количество примеров, на которых она тренировалась.

Как правило, машинное обучение требует множества примеров. Чтобы ИИ-модель научилась распознавать лошадь, вам потребуется показать ей тысячи изображений лошадей. Поэтому технология настолько вычислительно затратна и сильно отличается от человеческого обучения. Ребенку зачастую нужно увидеть всего несколько примеров объекта, или даже один, чтобы научиться распознавать его на всю жизнь.Читать полностью »

В один из будничных дней, под вечер, от моего начальника прилетела интересная задачка. Прилетает ссылка с текстом: «хочу отсюда получить все, но есть нюанс». Через 2 часа расскажешь, какие есть мысли по решению задачи. Время 16:00.

Как раз об этом нюансе и будет эта статья.

Я как обычно запускаю selenium, и после первого перехода по ссылке, где лежит искомая таблица с результатами выборов Республики Татарстан, вылетает оно

image

Как вы поняли, нюанс заключается в том, что после каждого перехода по ссылке появляется капча.

Проанализировав структуру сайта, было выяснено, что количество ссылок достигает порядка 30 тысяч.

Мне ничего не оставалось делать, как поискать на просторах интернета способы распознавания капчи. Нашел один сервис

+ Капчу распознают 100%, так же, как человек
— Среднее время распознавания 9 сек, что очень долго, так как у нас порядка 30 тысяч различных ссылок, по которым нам надо перейти и распознать капчу.

Я сразу же отказался от этой идеи. После нескольких попыток получить капчу, заметил, что она особо не меняется, все те же черные цифры на зеленом фоне.

А так как я давно хотел потрогать «компьютер вижн» руками, решил, что мне выпал отличный шанс попробовать всеми любимую задачу MNIST самому.

На часах уже было 17:00, и я начал искать предобученные модели по распознаванию чисел. После проверки их на данной капче точность меня не удовлетворила — ну что ж, пора собирать картинки и обучать свою нейросетку.

Для начала нужно собрать обучающую выборку.

Открываю вебдрайвер Хрома и скриню 1000 капчей себе в папку.
Читать полностью »

В прошлых статьях уже писали о том, как у нас устроены технологии распознавания текста:

Примерно так же до 2018 года было устроено распознавание японских и китайских символов: в первую очередь с использованием растровых и признаковых классификаторов. Но с распознаванием иероглифов есть свои трудности:

1). Огромное количество классов, которое нужно различать.
2). Более сложное устройство символа в целом.

image

Сказать однозначно, сколько символов насчитывает китайская письменность, так же сложно, как точно посчитать, сколько слов в русском языке. Но наиболее часто в китайской письменности используются ~10 000 символов. Ими мы и ограничили число классов, используемых при распознавании.

Обе описанные выше проблемы также приводят и к тому, что для достижения высокого качества приходится использовать большое количество признаков и сами эти признаки вычисляются на изображениях символов дольше.

Чтобы эти проблемы не приводили к сильнейшим замедлениям во всей системе распознавания, приходилось использовать множество эвристик, в первую очередь направленных на то, чтобы быстро отсечь значительное количество иероглифов, на которые эта картинка точно не похожа. Это всё равно не до конца помогало, а нам хотелось вывести наши технологии на качественно новый уровень.

Мы стали исследовать применимость свёрточных нейронных сетей, чтобы поднять как качество, так и скорость распознавания иероглифов. Хотелось заменить весь блок распознавания отдельного символа для этих языков с помощью нейронных сетей. В этой статье мы расскажем, как нам в итоге это удалось.
Читать полностью »

Я не люблю читать статьи, сразу иду на GitHub

Заранее прошу прощения за это неудобство.

Все, что будет описано в данной статье тем или иным образом затронет несколько сфер computer science, но погрузиться в каждую отдельную сферу не представляется возможным. Заранее прошу прощения за это неудобство.

Рассказывать о том, что такое машинное обучение и искусственный интеллект, в 2017 году наверное нет необходимости. На эту тему уже написано большое количество как публицистических статей, так и серьезных научных работ. Поэтому предполагается, что читатель уже знает, что это такое. Говоря о машинном обучении, сообщество data scientist и software engineers, как правило подразумевает глубокие нейронные сети, которые приобрели большую популярность по причине своей производительности. На сегодняшний день в мире существует большое количество различных программных решений и комплексов для решения задачи искусственных нейронных сетей: Caffe, TensorFlow, Torch, Theano(rip), cuDNN etc.

Swift

Swift — инновационный, protocol — oriented, open source язык программирования, выращенный в стенах компании Apple Крисом Латнером (недавно покинувшим компанию Apple, после SpaceX и обосновавшимся в Google).
В Apple’s OSs уже были различные библиотеки для работы с матрицами и векторной алгеброй: BLAS, BNNS, DSP, впоследствии объединенные под крышей одной библиотеки Accelerate.
В 2015 появились небольшие решения для реализации математики на основе графической технологии Metal.
В 2016 появился CoreML:
image
CoreML способен импортировать готовую, натренированную модель (CaffeV1, Keras, scikit-learn) и далее предоставить разработчику возможность экспортировать ее в приложение.
То есть, вам необходимо: Собрать модель на другой платформе, на языке Python или C++, используя сторонние фреймворки. Далее обучить ее на стороннем аппаратном решении.
И только после этого вы можете импортировать и работать на языке Swift. На мой взгляд очень нагромождено и сложно.
Читать полностью »

Содержание

В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.
В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.

В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).

Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].

Автоэнкодеры в Keras, Часть 6: VAE + GAN - 1

Иллюстрация из [1]
Читать полностью »

Содержание

(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)

При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).

Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетейGAN’ов.

Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.

Коротко о GAN

GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.

Схема GAN:

Автоэнкодеры в Keras, Часть 5: GAN(Generative Adversarial Networks) и tensorflow - 1

Читать полностью »

Содержание

В прошлой части мы познакомились с вариационными автоэнкодерами (VAE), реализовали такой на keras, а также поняли, как с его помощью генерировать изображения. Получившаяся модель, однако, обладала некоторыми недостатками:

  1. Не все цифры получилось хорошо закодировать в скрытом пространстве: некоторые цифры либо вообще отсутствовали, либо были очень смазанными. В промежутках между областями, в которых были сконцентрированы варианты одной и той же цифры, находились вообще какие-то бессмысленные иероглифы.
    Что тут писать, вот так выглядели сгенерированные цифры:

    Картинка

    Автоэнкодеры в Keras, Часть 4: Conditional VAE - 1

  2. Сложно было генерировать картинку какой-то заданной цифры. Для этого надо было смотреть, в какую область латентного пространства попадали изображения конкретной цифры, и сэмплить уже откуда-то оттуда, а тем более было сложно генерировать цифру в каком-то заданном стиле.

В этой части мы посмотрим, как можно лишь совсем немного усложнив модель преодолеть обе эти проблемы, и заодно получим возможность генерировать картинки новых цифр в стиле другой цифры – это, наверное, самая интересная фича будущей модели.

Автоэнкодеры в Keras, Часть 4: Conditional VAE - 2

Читать полностью »

Содержание

В прошлой части мы уже обсуждали, что такое скрытые переменные, взглянули на их распределение, а также поняли, что из распределения скрытых переменных в обычных автоэнкодерах сложно генерировать новые объекты. Для того чтобы можно было генерировать новые объекты, пространство скрытых переменных (latent variables) должно быть предсказуемым.

Вариационные автоэнкодеры (Variational Autoencoders) — это автоэнкодеры, которые учатся отображать объекты в заданное скрытое пространство и, соответственно, сэмплить из него. Поэтому вариационные автоэнкодеры относят также к семейству генеративных моделей.

Автоэнкодеры в Keras, Часть 3: Вариационные автоэнкодеры (VAE) - 1
Читать полностью »

image
Идея для написания этой статьи возникла прошлым летом, когда я слушал доклад на конференции BigData по нейронным сетям. Лектор «посыпал» слушателей непривычными словечками «нейрон», «обучающая выборка», «тренировать модель»… «Ничего не понял — пора в менеджеры», — подумал я. Но недавно тема нейронных сетей все же коснулась моей работы и я решил на простом примере показать, как использовать этот инструмент на языке JavaScript.

Мы создадим нейронную сеть, с помощью которой будем распознавать ручное написание цифры от 0 до 9. Рабочий пример займет несколько строк. Код будет понятен даже тем программистам, которые не имели дело с нейронными сетями ранее. Как это все работает, можно будет посмотреть прямо в браузере.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js