Рубрика «mlcourse_open»

Недавно OpenDataScience и Mail.Ru Group провели открытый курс машинного обучения. В прошлом анонсе много сказано о курсе. В этой статье мы поделимся материалами курса, а также объявим новый запуск.

Материалы открытого курса OpenDataScience и Mail.Ru Group по машинному обучению и новый запуск - 1

Кому не терпится: новый запуск курса — 5 февраля, регистрация не нужна, но чтоб мы вас запомнили и отдельно пригласили, заполните форму. Курс состоит из серии статей на Хабре (Первичный анализ данных с Pandas — первая из них), дополняющих их лекций на YouTube-канале, воспроизводимых материалов (Jupyter notebooks в github-репозитории курса), домашних заданий, соревнований Kaggle Inclass, тьюториалов и индивидуальных проектов по анализу данных. Главные новости будут в группе ВКонтакте, а жизнь во время курса будет теплиться в Slack OpenDataScience (вступить) в канале #mlcourse_open.

Читать полностью »

Привет!

Метрики в задачах машинного обучения - 1

В задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов используются метрики, а их выбор и анализ — непременная часть работы датасатаниста.

В этой статье мы рассмотрим некоторые критерии качества в задачах классификации, обсудим, что является важным при выборе метрики и что может пойти не так.

Читать полностью »

Доброго дня!

Мы продолжаем наш цикл статей открытого курса по машинному обучению и сегодня поговорим о временных рядах.

Открытый курс машинного обучения. Тема 9. Анализ временных рядов с помощью Python - 1

Посмотрим на то, как с ними работать в Python, какие возможные методы и модели можно использовать для прогнозирования; что такое двойное и тройное экспоненциальное взвешивание; что делать, если стационарность — это не про вас; как построить SARIMA и не умереть; и как прогнозировать xgboost-ом. И всё это будем применять к примеру из суровой реальности.

Читать полностью »

Всем привет!

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit - 1

Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.

Поехали!

Читать полностью »

Привет всем! Приглашаем изучить седьмую тему нашего открытого курса машинного обучения!

Открытый курс машинного обучения. Тема 7. Обучение без учителя: PCA и кластеризация - 1 Данное занятие мы посвятим методам обучения без учителя (unsupervised learning), в частности методу главных компонент (PCA — principal component analysis) и кластеризации. Вы узнаете, зачем снижать размерность в данных, как это делать и какие есть способы группирования схожих наблюдений в данных.Читать полностью »

Сообщество Open Data Science приветствует участников курса!

В рамках курса мы уже познакомились с несколькими ключевыми алгоритмами машинного обучения. Однако перед тем как переходить к более навороченным алгоритмам и подходам, хочется сделать шаг в сторону и поговорить о подготовке данных для обучения модели. Известный принцип garbage in – garbage out на 100% применим к любой задаче машинного обучения; любой опытный аналитик может вспомнить примеры из практики, когда простая модель, обученная на качественно подготовленных данных, показала себя лучше хитроумного ансамбля, построенного на недостаточно чистых данных.

Открытый курс машинного обучения. Тема 6. Построение и отбор признаков - 1

Читать полностью »

Привет всем, кто дожил до пятой темы нашего курса!

Курс собрал уже более 1000 участников, из них первые 3 домашних задания сделали 520, 450 и 360 человек соответственно. Открытый курс машинного обучения. Тема 5. Композиции: бэггинг, случайный лес - 1 Около 200 участников пока идут с максимальным баллом. Отток намного ниже, чем в MOOC-ах, даже несмотря на большой объем наших статей.

Данное занятие мы посвятим простым методам композиции: бэггингу и случайному лесу. Вы узнаете, как можно получить распределение среднего по генеральной совокупности, если у нас есть информация только о небольшой ее части; посмотрим, как с помощью композиции алгоритмов уменьшить дисперсию, и таким образом улучшим точность модели; разберём, что такое случайный лес, какие его параметры нужно «подкручивать» и как найти самый важный признак. Сконцентрируемся на практике, добавив «щепотку» математики.

Список статей серии

  1. Первичный анализ данных с Pandas
  2. Визуальный анализ данных c Python
  3. Классификация, деревья решений и метод ближайших соседей
  4. Линейные модели классификации и регрессии
  5. Композиции: бэггинг, случайный лес
  6. Обучение без учителя: PCA, кластеризация, поиск аномалий
  7. Искусство построения и отбора признаков. Приложения в задачах обработки текста, изображений и гео-данных

Читать полностью »

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии - 1

Всем привет!

Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных.
Ключевое отличие нашей подачи материала от аналогичного в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).

Пример двух таких задач – это соревнования Kaggle Inclass по прогнозированию популярности статьи на Хабре и по идентификации взломщика в Интернете по его последовательности переходов по сайтам. Домашним заданием №4 будет применение линейных моделей в этих задачах.

А пока еще можно сделать простое 3 задание – до 23:59 20 марта.
Все материалы доступны на GitHub.

Читать полностью »

Открытый курс машинного обучения. Тема 3. Классификация, деревья решений и метод ближайших соседей - 1

Привет всем, кто проходит курс машинного обучения на Хабре!

В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.

Напомним, что к курсу еще можно подключиться, дедлайн по 2 домашнему заданию – 13 марта 23:59.

Читать полностью »

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python - 1

Привет всем, кто начал проходить курс! Новые участники, добро пожаловать! Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE.

Напомним, что к курсу еще можно подключиться, дедлайн по 1 домашнему заданию – 6 марта 23:59.

Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js