Рубрика «ml» - 9

Завтра, в 20:00 в наших соцсетях выступит Валерия Коган — выпускница физтеха, со-основательница стартапов Fermata и Smartomica.

Лера пришла идея контролировать растения в теплицах за счет машинного обучения, когда ее знакомые рассказали ей о своих проблемах с массовым выращивании огурцов и помидоров. Тогда она с приятелями основала Fermata и начала разрабатывать платформу для мониторинга растений в реальном времени.

В 2019-ом компания привлекла $1,1 млн инвестиций от частного инвестора, а уже в в марте 2020-го, в ходе раунда А получила еще $3,7 млн. инвестиций от британского фонда Massa Innovations и нескольких частных инвесторов.

Кроме агротеха, Лера занимается разработкой новых методов диагностики рака и является приглашенным ученым в Roswell Park Cancer Institute. В Smartomica они разрабатывает технологии анализа медицинских и научных данных для диагностики и лечения онкологических пациентов
Читать полностью »

Еще в прошлом году у нас выступал Артем Попов, тимлид команды VK Performance Advertising. Делимся с вами расшифровкой эфира и записью.


Меня зовут Артем, я – руководитель performance advertising в ВК. Наша команда занимается тем, что, с одной стороны, делает рекламу в ВК эффективнее, выгоднее для рекламодателей, интереснее для пользователей. Это большая продуктовая цель.

С другой стороны, технически, мы – команда ML-инженеров, довольно обычных разработчиков, которые много времени занимаются задачами, связанными с data science и ML. Сегодня я хочу поговорить про эти две темы, потому что обе они мне интересны, я о них люблю поговорить. Я очень рассчитываю на то, что у нас будет живое общение; если кто-то смотрит трансляцию, будет интереснее, если вы будете писать вопросы.
Читать полностью »

Завтра, 28 декабря в 20:00 у нас выступает Артем Попов — тимлид команды VK Performance Advertising.

Артем руководит командой, которая занимается задачами, связанными с Data Science в рекламе. Их задача делать рекламу в ВК эффективнее и выгодней.

Все члены команды, занимающиеся машинным обучением погружены как в инженерную часть, так и в продукт – культура разработки в ВК исторически развивалась таким образом, что разработчики занимаются продуктом от начала до конца, начиная постановкой задачи, заканчивая всем этапа разработки и жизни продукта в продакшене.

Артем расскажет про интересные задачи для дата-саентистов в мире рекламы.

Анонс: как дата-саентисты в ВК делают рекламу эффективной - 1Анонс: как дата-саентисты в ВК делают рекламу эффективной - 2Анонс: как дата-саентисты в ВК делают рекламу эффективной - 3Анонс: как дата-саентисты в ВК делают рекламу эффективной - 4
Читать полностью »

3 августа в наших соцсетях выступал Сергей Ширкин, специалист по ML и искусственному интеллекту.

Сергей занимался автоматизацией финансовых технологий и базами данных в «Сбербанке» и «Росбанке», построением финансовых моделей на основе машинного обучения и аналитической деятельностью в компании Equifax. Прогнозирует телесмотрение с применением методов искусственного интеллекта в Dentsu Aegis Network Russia. Приглашённый преподаватель ВШЭ (магистерская программа «Коммуникации, основанные на данных»).

Также Сергей исследует квантовые вычисления в приложении к ИИ и машинному обучению. Он стоит у истоков факультетов Искусственного интеллекта, Аналитики Big Data и Data Engineering онлайн-университета Geek University, на которых работает деканом и преподавателем.

Делимся с вами расшифровкой эфира и записью.

***

Меня зовут Сергей Ширкин, сегодня мы поговорим об искусственном интеллекте. Обсудим начальные пути – как попасть в искусственный интеллект, как обучиться необходимым предметам, какие курсы пройти, какую литературу читать, как начать карьеру. Также про различные направления.

Сегодняшние темы могут быть интересны не только новичкам, но и опытным программистам – например, как перейти из сферы программирования в сферу машинного обучения, искусственного интеллекта, нейронных сетей. В зависимости от того, в какой технологии человек занимается и какие языки изучает, практичный переход в эту сферу может проходить по-разному. Специальностей в ИИ очень много.
Читать полностью »

Data Fest пройдет в этом году в онлайн формате 19 и 20 сентября 2020. Фестиваль организован сообществом Open Data Science и как обычно соберет исследователей, инженеров и разработчиков в области анализа данных, искусственного интеллекта и машинного обучения.

Регистрация. Ну а дальше к деталям.

Data Fest 2020 — полностью в Online уже завтра - 1Читать полностью »

Как мы научили робота чувству юмора - 1

В IT-кругах ходит такая шутка, что машинное обучение (machine learning, ML) — это как секс в среде подростков: все об этом говорят, все делают вид, что этим занимаются, но, на самом деле, мало у кого это получается. У FunCorp получилось внедрить ML в главную механику своего продукта и добиться радикального (почти на 40%!) улучшения ключевых метрик. Интересно? Добро пожаловать под кат.Читать полностью »

Пытаемся определить язык таинственной рукописи — манускрипта Войнича — простыми методами обработки естественных языков на Python.
Попытка определить язык манускрипта Войнича, Random Forest Classifier - 1

Читать полностью »

Новости о машинном обучении Apple в 2020 году - 1
В 2020 году машинное обучение на мобильных платформах перестало быть революционным новшеством. Интеграция интеллектуальных функций в приложения стала стандартной практикой.

К счастью, это вовсе не означает, что Apple прекратила разрабатывать инновационные технологии.

В этой публикации я кратко расскажу о новостях в отношении платформы Core ML и других технологий искусственного интеллекта и машинного обучения в экосистеме Apple.Читать полностью »

Снятся ли выключателям вопросы морали (и электроовцы)? - 1

Прямо сейчас в компьютерных сетях происходит революция: устройства все лучше оценивают происходящее вокруг себя, при этом анализируя данные локально, то есть «здесь и сейчас». Благодаря этому устройства могут предложить людям все бОльшую функциональность, не обращаясь к облаку. Но смогут ли в итоге выключатели освещения озаботится вопросами морали?
Читать полностью »

Почему нам нужен DevOps в сфере ML-данных - 1

Развертывание машинного обучения (machine learning, ML) в продакшн – задача нелегкая, а по факту, на порядок тяжелее развертывания обычного программного обеспечения. Как итог, большинство ML проектов так никогда и не увидят света — и продакшена — так как большинство организаций сдаются и бросают попытки использовать ML для продвижения своих продуктов и обслуживания клиентов.

Насколько мы можем видеть, фундаментальное препятствие на пути большинства команд к созданию и развертыванию ML в продакшн в ожидаемых масштабах заключается в том, что нам все еще не удалось привнести практики DevOps в машинное обучение. Процесс создания и развертывания моделей ML частично раскрыт уже вышедшими MLOps решениями, однако им недостает поддержки со стороны одной из самых трудных сторон ML: со стороны данных.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js