Рубрика «ml» - 6

ML в Managed Kubernetes: для каких задач нужен кластер с GPU - 1

Машинное обучение используют в разных сферах: от бизнес-аналитики до астрофизики. Для грамотного потребления ресурсов модели развертывают в контейнерах на выделенных серверах или в облаках. Теперь с ML можно эффективно работать в готовых кластерах Kubernetes — в них появились производительные видеокарты.

Под катом рассказываем, для чего нужны GPU в кластерах Managed Kubernetes и как они ускоряют продакшн ML-сервисов.
Читать полностью »

Представьте себе, что вы — владелец кофейни, которая работает на доставку. У вас широкий ассортимент и много постоянных клиентов. Но есть одна ужасно странная странность: каждый из них требует доставить напиток строго определенной температуры. У вас есть курьеры разной быстроты, сложные маршруты, пробки, погода, в конце концов… Слишком холодный кофе — клиент уходит, а разогревать «с запасом» невыгодно и тоже не соответствует заказу. По идее на этом месте вы должны понять, что вам нужна математическая модель, которая все рассчитает.

Что общего между кофе с доставкой и ковшом жидкой стали - 1

В процессе производства стали есть точно такие же проблемы. Плавка должна прийти на разливку, будучи строго определенной температуры, но по дороге ее ждёт множество шагов, на каждом из которых металл остывает. Чтобы знать, до какой температуры нагреть металл на выходе, нужно очень точно, вплоть до минуты, спрогнозировать весь маршрут стали до разливки.

Что общего между кофе с доставкой и ковшом жидкой стали - 2

Человеку в такой задаче трудно достичь идеальной точности, поэтому у нас работает цифровой сервис, который называется «Заказ температуры».
Читать полностью »

Первое правило машинного обучения: начните без машинного обучения - 1

Эффективное использование машинного обучения — сложная задача. Вам нужны данные. Вам нужен надёжный конвейер, поддерживающий потоки данных. И больше всего вам нужна высококачественная разметка. Поэтому чаще всего первая итерация моих проектов вообще не использует машинное обучение.

Что? Начинать без машинного обучения?

Об этом говорю не только я.

Догадайтесь, какое правило является первым в 43 правилах машинного обучения Google?

Правило №1: не бойтесь запускать продукт без машинного обучения.

Машинное обучение — это здорово, но для него требуются данные. Теоретически, можно взять данные из другой задачи и подстроить модель под новый продукт, но она, скорее всего, не справится с базовыми эвристиками. Если вы предполагаете, что машинное обучение придаст вам рост на 100%, то эвристика даст вам 50%.

Читать полностью »

image

Люди, которые застали динозавров и пейджеры, могут помнить, что когда-то давно, диктуя сообщение девушке-оператору пейджинговой компании, можно было услышать в ответ «Это сообщение оскорбительно для получателя, отправлять его я не буду». И попробуй докажи, что это у вас с получателем такая внутренняя шутка.

С тех пор способов доставить получателю оскорбительное сообщение стало намного больше, а способов превентивно это остановить не так уж и много. Предлагаем вспомнить наиболее любопытные технологические попытки сделать интернет чуть более добрым местом.
Читать полностью »

Сговор и жульничество в академических кругах - 1
«Он не публиковался» © Mischa Richter

На Хабре много говорилось о проблеме "publish or perish" (публикуйся или умри), фейковых журналах и конференциях, накрутке числа публикаций и индекса цитируемости, фальшивых «соавторах», даже о генераторах псевдонаучных текстов. Но в 2021 году выявилось ещё одно очень неприглядное явление: круговое голосование рецензентов. Когда статьи выбирают не по значимости, а по именам авторов, то это подрывает основы взаимного доверия и цельность всей научной области.

Конечно, тут ничего нового и «все всё знали». Просто нарыв наконец-то вскрылся…

На одной из конференций раскрыли попытку жульничества в системе отбора публикаций. К сожалению, «отличилась» наша отрасль — информатика (computer science).
Читать полностью »

Завтра, в 20:00 в наших соцсетях выступит Валерия Коган — выпускница физтеха, со-основательница стартапов Fermata и Smartomica.

Лера пришла идея контролировать растения в теплицах за счет машинного обучения, когда ее знакомые рассказали ей о своих проблемах с массовым выращивании огурцов и помидоров. Тогда она с приятелями основала Fermata и начала разрабатывать платформу для мониторинга растений в реальном времени.

В 2019-ом компания привлекла $1,1 млн инвестиций от частного инвестора, а уже в в марте 2020-го, в ходе раунда А получила еще $3,7 млн. инвестиций от британского фонда Massa Innovations и нескольких частных инвесторов.

Кроме агротеха, Лера занимается разработкой новых методов диагностики рака и является приглашенным ученым в Roswell Park Cancer Institute. В Smartomica они разрабатывает технологии анализа медицинских и научных данных для диагностики и лечения онкологических пациентов
Читать полностью »

Еще в прошлом году у нас выступал Артем Попов, тимлид команды VK Performance Advertising. Делимся с вами расшифровкой эфира и записью.


Меня зовут Артем, я – руководитель performance advertising в ВК. Наша команда занимается тем, что, с одной стороны, делает рекламу в ВК эффективнее, выгоднее для рекламодателей, интереснее для пользователей. Это большая продуктовая цель.

С другой стороны, технически, мы – команда ML-инженеров, довольно обычных разработчиков, которые много времени занимаются задачами, связанными с data science и ML. Сегодня я хочу поговорить про эти две темы, потому что обе они мне интересны, я о них люблю поговорить. Я очень рассчитываю на то, что у нас будет живое общение; если кто-то смотрит трансляцию, будет интереснее, если вы будете писать вопросы.
Читать полностью »

Завтра, 28 декабря в 20:00 у нас выступает Артем Попов — тимлид команды VK Performance Advertising.

Артем руководит командой, которая занимается задачами, связанными с Data Science в рекламе. Их задача делать рекламу в ВК эффективнее и выгодней.

Все члены команды, занимающиеся машинным обучением погружены как в инженерную часть, так и в продукт – культура разработки в ВК исторически развивалась таким образом, что разработчики занимаются продуктом от начала до конца, начиная постановкой задачи, заканчивая всем этапа разработки и жизни продукта в продакшене.

Артем расскажет про интересные задачи для дата-саентистов в мире рекламы.

Анонс: как дата-саентисты в ВК делают рекламу эффективной - 1Анонс: как дата-саентисты в ВК делают рекламу эффективной - 2Анонс: как дата-саентисты в ВК делают рекламу эффективной - 3Анонс: как дата-саентисты в ВК делают рекламу эффективной - 4
Читать полностью »

3 августа в наших соцсетях выступал Сергей Ширкин, специалист по ML и искусственному интеллекту.

Сергей занимался автоматизацией финансовых технологий и базами данных в «Сбербанке» и «Росбанке», построением финансовых моделей на основе машинного обучения и аналитической деятельностью в компании Equifax. Прогнозирует телесмотрение с применением методов искусственного интеллекта в Dentsu Aegis Network Russia. Приглашённый преподаватель ВШЭ (магистерская программа «Коммуникации, основанные на данных»).

Также Сергей исследует квантовые вычисления в приложении к ИИ и машинному обучению. Он стоит у истоков факультетов Искусственного интеллекта, Аналитики Big Data и Data Engineering онлайн-университета Geek University, на которых работает деканом и преподавателем.

Делимся с вами расшифровкой эфира и записью.

***

Меня зовут Сергей Ширкин, сегодня мы поговорим об искусственном интеллекте. Обсудим начальные пути – как попасть в искусственный интеллект, как обучиться необходимым предметам, какие курсы пройти, какую литературу читать, как начать карьеру. Также про различные направления.

Сегодняшние темы могут быть интересны не только новичкам, но и опытным программистам – например, как перейти из сферы программирования в сферу машинного обучения, искусственного интеллекта, нейронных сетей. В зависимости от того, в какой технологии человек занимается и какие языки изучает, практичный переход в эту сферу может проходить по-разному. Специальностей в ИИ очень много.
Читать полностью »

Data Fest пройдет в этом году в онлайн формате 19 и 20 сентября 2020. Фестиваль организован сообществом Open Data Science и как обычно соберет исследователей, инженеров и разработчиков в области анализа данных, искусственного интеллекта и машинного обучения.

Регистрация. Ну а дальше к деталям.

Data Fest 2020 — полностью в Online уже завтра - 1Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js