Рубрика «ml» - 5

Как в Купере масштабировали машинное обучение и что из этого получилось - 1

Не секрет, что ML‑модели требуют огромного количества данных. Информации не просто много, она организовывается в многообразные структуры, версионируется, употребляется разными моделями. Скорость обращения данных тоже критична, особенно для систем, взаимодействующих с пользователями в режиме реального времени.

При возросшей сложности не обойтись без специализированных инструментов, например Feature Store. Однако случается, что все решения на рынке не годятся по тем или иным причинам. Тогда приходится рассчитывать исключительно на свои силы.

Рассказываем, как в Купере внедрили Feast, хранилище признаков (Feature Store) с открытым исходным кодом. После прочтения вы познакомитесь с инструментом и сможете решить, подходит ли Feast для коммерческого использования. Подробности под катом!Читать полностью »

Контроль качества разметки на проекте: 4 секрета успеха - 1

Существует известное правило: “мусор на входе, мусор на выходе”. Все знают, что “чистые”, точные данные повышают качество и корректность работы ИИ-моделей, так что итоговая ценность оправдывает дополнительные усилия и вложения. Намного дешевле компаниям выходит предотвратить проблемы с данными, чем решать их после.

Читать полностью »

На волне историй про практическое применение ИИ захотелось сделать и свой обзор на эту тему.

Я возьму область, которая мне близка, а именно промышленные решения. Мне они всегда нравились тем, что чаще всего имеют какое-то физическое воплощение. Это не просто модель на сервере, это можно потрогать (если не очень горячо и не отрежет руку). 

 

Читать полностью »

Знакомьтесь, «Незнакомое». Как мы сделали новый режим для Моей волны - 1

Привет! Меня зовут Савва Степурин, я старший разработчик в группе рекомендательных продуктов в Фантехе Яндекса. Сегодня расскажу вам про то, как мы сделали «Незнакомое» для Моей волны — специальный режим для активного поиска музыкальных открытий.

Читать полностью »

Intro

Прежде чем приступать к самому обзору, хотелось бы обозначить отличительные черты подхода, относительно большинства диалоговых систем:

Текущие системы работают в каскадной манере: сначала «активационное» слово, затем аудио переводится в текст (ASR), текст обрабатывается и анализируется, и, наконец, ответ генерируется через TTS. Однако это медленно, теряет эмоции и «живость» разговора, и, что самое важное, все взаимодействие происходит через жесткое чередование говорящих — сначала ты, потом я, и так далее.

  • Moshi не опирается на сложные каскадные пайплайны (ASR, NLU, TTS), а объединяет все эти функции Читать полностью »

Искусственный интеллект сейчас, по большому счету, везде. В любой отрасли нам говорят о том, что в ней используются нейросети, машинное обучение и другие направления ИИ. Не стали исключением и системы, связанные с обработкой персональных данных пользователей. В этой статье мы поговорим о том, как связаны искусственный интеллект и защита персональных данных.

Риски при обработке данных ИИ

Читать полностью »

Введение

С ростом популярности LLM (больших языковых моделей) начинает подниматься вопрос о внедрении систем мониторинга LLM, которые будут проверять промпт пользователей на наличие токсичного контента, среди которого можно выделить промпт-инъекции и джейлбрейки (jailbreaks), а также ответ LLM, среди которого может быть сгенерированный неэтичный контент, утечки данных (пароли, промпт-инструкции и другая тайная от пользователя информация).

Читать полностью »

Привет!

Меня зовут Дима Архипов. Я учусь на четвертом курсе института на направлении прикладной математики в НИТУ МИСИС. В марте 2024 года мне удалось попасть на стажировку в центр медицины Sber AI LabЧитать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js