Рубрика «микропроцессоры» - 3

Авторы: к.ф.-м.н. Чернов А.В. (monsieur_cher) и к.ф.-м.н. Трошина К.Н.

Как с помощью самых общих предположений, основанных на знании современных процессорных архитектур, можно восстановить структуру программы из бинарного образа неизвестной архитектуры, и дальше восстановить алгоритмы и многое другое?

В этой статье мы расскажем об одной интересной задаче, которая была поставлена перед нами несколько лет назад. Заказчик попросил разобраться с бинарной прошивкой устройства, которое выполняло управление неким физическим процессом. Ему требовался алгоритм управления в виде компилируемой С-программы, а также формулы с объяснением, как они устроены и почему именно так. По словам Заказчика, это было необходимо для обеспечения совместимости со «старым» оборудованием в новой системе. То, как мы в итоге разбирались с физикой, в рамках данного цикла статей мы опустим, а вот процесс восстановления алгоритма рассмотрим подробно.

Практически повсеместное использование в массовых устройствах программируемых микроконтроллеров (концепции интернета вещей IOT или умного дома SmartHome) требует обратить внимание на бинарный анализ встраиваемого кода, или, другими словами, бинарный анализ прошивок устройств.

Бинарный анализ прошивок устройств может иметь следующие цели:

  • Анализ кода на наличие уязвимостей, позволяющих получить несанкционированный доступ к устройству или к данным передаваемым или обрабатываемым этим устройством.
  • Анализ кода на наличие недокументированных возможностей, приводящих, например, к утечке информации.
  • Анализ кода для восстановления протоколов и интерфейсов взаимодействия с устройствами для обеспечения совместимости данного устройства с другими.

Поставленная выше задача анализа бинарного кода может рассматриваться как частный случай задачи анализа бинарника для обеспечения совместимости устройств.
Читать полностью »

В рекламном видеоролике нового iPad Pro, показанном в октябре, присутствует последовательность кадров, на которой планшет как бы собирается из компонентов. Будучи большим любителем расковыривать электронику, я наснимал из ролика кадров, на которых демонстрируется заполнение материнской платы компонентами, и вот один из них:

Очень странный корпус микропроцессора A12X от Apple - 1

В центре, предположительно, находится A12X; однако выглядит он, как полкорпуса, рядом с которым стоят, возможно, парочка корпусов DRAM. Увеличиваем и получаем следующее:
Читать полностью »

Современные микроэлектронные технологии — как «Десять негритят». Стоимость разработки и оборудования так велика, что с каждым новым шагом вперёд кто-то отваливается. После новости об отказе GlobalFoundries от разработки 7 нм их осталось трое: TSMC, Intel и Samsung. А что такое, собственно “проектные нормы” и где там тот самый заветный размер 7 нм? И есть ли он там вообще?

Проектные нормы в микроэлектронике: где на самом деле 7 нанометров в технологии 7 нм? - 1

Рисунок 1. Транзистор Fairchild FI-100, 1964 год.

Самые первые серийные МОП-транзисторы вышли на рынок в 1964 году и, как могут увидеть из рисунка искушенные читатели, они почти ничем не отличались от более-менее современных — кроме размера (посмотрите на проволоку для масштаба).Читать полностью »

Размеры транзисторов в современных микросхемах неумолимо уменьшаются — несмотря на то, что о смерти закона Мура говорят уже несколько лет, а физический предел миниатюризации уже близок (точнее, в некоторых местах его уже успешно обошли). Тем не менее, это уменьшение не приходит даром, а аппетиты пользователей растут быстрее, чем возможности разработчиков микросхем. Поэтому, кроме миниатюризации транзисторов, для создания современных микроэлектронных продуктов используются и другие, зачастую не менее продвинутые технологии.

Системы в корпусе или Что на самом деле находится под крышкой корпуса микропроцессора - 1
Читать полностью »

В каждой статье на хабре, посвященной отечественным микропроцессорам, так или иначе поднимается вопрос лицензионных IP-блоков и того, насколько их наличие и отсутствие уменьшает ценность, отечественность или безопасность разработки. При этом очень многие комментаторы не слишком хорошо понимают предмет обсуждения, поэтому давайте попробуем разобраться, как же именно работает лицензирование в микроэлектронной индустрии, чем хороши и чем плохи лицензированные блоки, и в чем состоит процесс разработки микросхемы, если большая часть блоков в ней куплена.
Заказные блоки в микросхемах (Silicon IP): как это работает - 1
Читать полностью »

Новое исследование Ассоциации полупроводниковой промышленности: «Через 5 лет закон Мура перестанет действовать» - 1
Изображение: Rebecca Mock

Закон Мура известен широкой общественности уже более 50 лет. Не являясь законом в узком смысле этого слова, десятилетиями он в целом оставался справедлив. Хотя есть сомнения в том, что было первично: закон или стремление крупнейших мировых корпораций, которые задают тон всей ИТ-индустрии, следовать ему.

Время от времени эксперты предсказывают, что закон перестанет действовать. Однако ранее это не находило подтверждения на практике. Но на этот раз все серьезнее. По крайней мере, так считает Ассоциация полупроводниковой промышленности (Semiconductor Industry Association).Читать полностью »

Ангстрем: В России создано новое поколение транзисторов, устойчивых к космическим тяжелым заряженным частицам - 1
Транзистор 2ПЕ206А9. Источник

Российский производитель микроэлектроники ОАО «Ангстрем» на днях представил новое поколение транзисторов, устойчивых к космической радиации. Так как подобные микросхемы во всём мире выпускает только одна компания, сотрудничество с которой не может быть реализовано в полной мере из-за санкционной политики, то вполне естественно, что заказ на разработку поступил по линии РосКосмоса. Кратко о новинке под катом.
Читать полностью »

16 июня 2016 года в рамках симпозиума 2016 Symposium on VLSI Technology and Circuits, прошедшего недавно в Гонолулу, группой специалистов факультета Электроники и Вычислительной техники (Department of Electrical and Computer Engineering) Калифорнийского Университета в Дэвисе был представлен действующий прототип чипа KiloCore, на кристалле которого уместилась тысяча независимых программируемых процессоров. Общее число транзисторов на кристалле чипа составило 621 миллион единиц, а максимально развиваемое быстродействие приблизилось к рекордной отметке 1.78 триллиона операций в секунду.

image
Читать полностью »

Продолжая тему первой статьи — история эволюции процессоров с конца XX века по начала XI века.

Во многих процессорах 80-х годов использовалась архитектура CISC (Complex instruction set computing). Чипы были довольно сложными и дорогими, а также не достаточно производительными. Возникла необходимость в модернизации производства и увеличения количества транзисторов.

Архитектура RISC

В 1980 году стартовал проект Berkeley RISC, которым руководили американские инженеры Дэвид Паттерсон и Карло Секвин. RISC (restricted instruction set computer) — архитектура процессора с увеличенным быстродействием благодаря упрощенным инструкциям.

История развития процессоров: конец 80-х — начало 2000-х - 1

Руководители проекта Berkeley RISC — Дэвид Паттерсон и Карло Секвин

Читать полностью »

Центральный процессор представляет из себя сложную интегральную схему, которая является одним из ключевых составляющих элементов современного ПК. Первые компьютеры появились примерно в 40-х годах прошлого века, работая на электромеханических реле и вакуумных лампах. Они обеспечивали функционирование первых вычислительных машин. В 60-х годах появились первые интегральные микросхемы которые на долгое время стали неотъемлемой частью любого вычислительного устройства. Началом эпохи современных CPU можно смело назвать 1971-й год.

Intel 4004

История развития процессоров: из 70-х в 90-е - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js