Быстрый и простой алгоритм требующий модификации
Среди методов решения задачи коммивояжёра метод ближайшего соседа привлекает простотой алгоритма. Метод ближайшего соседа в исходной формулировке заключается в нахождении замкнутой кривой минимальной длины, соединяющей заданный набор точек на плоскости [1]. Моё внимание привлекла наиболее распространённая реализация данного алгоритма в пакете Mathcad, размещённая в сети на ресурсе [2]. Сама реализация не совсем удобна, например, нельзя вывести матрицу расстояний между пунктами или проанализировать альтернативные маршруты.
На ресурсе [2] приведена следующая вполне справедливая критика данного метода. «Маршрут не оптимальный (не самый короткий) и сильно зависит от выбора первого города. Фактически не решена задача коммивояжера, а найдена одна гамильтонова цепь графа». Там же предложен путь некоторого усовершенствования метода ближайшего соседа. «Следующий возможный шаг оптимизации — «развязывание петель» (ликвидация перекрестий). Другое решение — перебор всех городов (вершин графа) в качестве начала маршрута и выбор наикратчайшего из всех маршрутов». Однако реализация последнего предложения не приведена. Учитывая все перечисленные обстоятельства, я решил реализовать приведенный алгоритм на Python и при этом предусмотреть возможность выбора начального пункта по критерию минимальной длины марщрута.
Читать полностью »