Рубрика «MCMC»

Привет!

Напоминаем, что ранее мы анонсировали книгу "Машинное обучение без лишних слов" — и теперь она уже в продаже. Притом, что для начинающих специалистов по МО книга действительно может стать настольной, некоторые темы в ней все-таки затронуты не были. Поэтому всем заинтересованным предлагаем перевод статьи Саймона Керстенса о сути алгоритмов MCMC с реализацией такого алгоритма на Python.
Читать полностью »

PyMC3 — МСМС и не только

PyMC3 — MCMC и не только - 1
Привет!

В этом посте уже упоминался PyMC3. Там можно почитать про основы MCMC-сэмплирования. Здесь я расскажу про вариационный вывод (ADVI), про то, зачем все это нужно и покажу на довольно простых примерах из галереи PyMC3, чем это может быть полезно. Одним из таких примеров будет байесовская нейронная сеть для задачи классификации, но это в самом конце. Кому интересно — добро пожаловать!

Читать полностью »

Рассказывая о вероятностном программировании и Байесовской статистике, я обычно не уделяю особого внимания тому, как, на самом деле, выполняется вероятностный вывод, рассматривая его как некий «чёрный ящик». Вся прелесть вероятностного программирования заключается в том, что, на самом деле, для того, чтобы строить модели, не обязательно понимать, как именно делается вывод. Но это знание, безусловно, весьма полезно.

MCMC-сэмплинг для тех, кто учился, но ничего не понял - 1


Как-то раз я рассказывал о новой Байесовской модели человеку, который не особенно разбирался в предмете, но очень хотел всё понять. Он-то и спросил меня о том, чего я обычно не касаюсь. «Томас, — сказал он, — а как, на самом деле, выполняется вероятностный вывод? Как получаются эти таинственные сэмплы из апостериорной вероятности?».
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js