Рубрика «математика» - 90

Скажу сразу: как бы мне этого ни хотелось, квантовая телепортация не позволит перенести мою бабушку из деревни в мою квартиру. Бабуля знает, что мне нравятся всякие квантовые штуки, и решила вместо денег и носков отправить мне на день рождения квантовое состояние. Здесь мы поговорим о другом — передаче квантовой информации.

Это вторая статья из серии о квантовом программировании. Предполагается, что читатель уже знаком с первой частью.

Квантовая телепортация на языке Q# - 1Читать полностью »

Добрый день! Это третий дайджест материалов по машинному обучению и анализу данных, который появился после длительного перерыва.

image

Читать полностью »

Измерение уровня жидкости в топливном баке ракеты - 1

Введение

Топливо из резервуара окислителя и резервуара горючего поступает в камеру сгорания ракетного двигателя. Синхронная подача топлива в заданной пропорции обеспечивает эффективную работу ракетного двигателя.

Эффективная работа зависит от точного измерения уровня топлива в баке. Для этой цели топливный бак имеет систему управления топливом. Система представляет собой вертикальный измерительный канал с датчиками внутри канала для фиксации свободного уровня жидкости в канале [1]:

Измерение уровня жидкости в топливном баке ракеты - 2

Рисунок. Схема топливного бака. 1- резервуар, 2- топливо, 3- измерительный канал, Po — давление газа, Измерение уровня жидкости в топливном баке ракеты - 3 — уровень жидкости в канале, H — уровень жидкости в баке, r,x — координатные оси.

Вертикальный канал и топливный бак являются сообщающими сосудами. При снижении уровня топлива в баке, уменьшается и уровень топлива в измерительном канале. Когда уровень топлива в канале достигает датчика, происходит активация датчика. Сигнал поступает в систему управления топливом.

В результате расхода топлива его уровень в баке меняется. Таким образом, уровень топлива в канале должен определять уровень топлива в баке. Проблемы две. Первая методическая состоит в том, что свободная поверхность топлива в баке не совпадает с поверхностью топлива в канале.

Вторая проблема в колебаниях уровня при изменении ускорений ракеты в полёте, что приводит к ложным срабатываниям датчиков и, как следствие, к погрешностям измерения.

Ошибка измерения уровня топлива приводит к неэффективному расходу топлива. В результате ракетный двигатель работает не оптимально, а в танках может оставаться «лишнее» количество топлива.

Далее рассмотрим, как можно определить методическую погрешность от первой проблемы и уменьшить погрешность измерения от второй.

Читать полностью »

Привет! На следующей неделе, в среду, 24 апреля, приглашаем специалистов по Data Science на митап, который мы организуем вместе с AI Community и AI Today. Будем говорить о самых страшных ошибках, которые допускают DS. Подробно обсудим CRISP-DM и Tips&Tricks, которые можно использовать в работе. Вы услышите доклады Ивана Гуза, Игоря Слинько и Станислава Гафарова. Регистрируйтесь на встречу и приглашайте коллег. Под катом — тезисы выступлений, ссылки на регистрацию и видеотрансляцию митапа.

Самые страшные ошибки, которые допускают DS. Встреча в офисе Авито 24 апреля - 1

Читать полностью »

Пространство состояний в задачах проектирования систем оптимального управления - 1

Введение

Исследование системы управления во временной области с помощью переменных состояния широко используется в последнее время благодаря простоте проведения анализа.

Состоянию системы соответствует точка в определённом евклидовом пространстве, а поведение системы во времени характеризуется траекторией, описываемой этой точкой.

При этом математический аппарат включает готовые решения по аналоговому и дискретному LQR и DLQR контролерам, фильтра Калмана, и всё это с применением матриц и векторов, что и позволяет записывать уравнения системы управления в обобщённом виде, получая дополнительную информацию при их решении.

Целью данной публикации является рассмотрение решения задач проектирования систем оптимального управления методом описания пространства состояний с использованием программных средств Python.
Читать полностью »

В статье приводится новое доказательство красивой и трудной теоремы математического анализа, изложенное таким образом, что оно доступно учащимся старших классов профильных математических школ.

Пусть $f(x)$ — бесконечно много раз дифференцируемая действительная функция, причем для каждой точки $xin R$ найдется натуральное $n$ такое, что $f^{(n)}(x)=0$. Тогда $f(x)$ многочлен.

Доказательство

Нам понадобится теорема Бэра о системе замкнутых множеств:

1. Пусть $H$ и $F_{1},F_{2},...,F_{n},...$ замкнутые подмножества прямой, причем $H neq varnothing$ и $Hsubset bigcup limits_{n} F_{n}$. Тогда в $H$ найдется точка, которая содержится в одном из $F_{n}$ вместе со своей окрестностью. Более точно, найдется точка $xin H$, натуральное $n$ и $varepsilon >0$ такие, что $(x-varepsilon;x+varepsilon)cap H subset F_{n}$.

Действительно (от противного), выберем точку $x_{1} in H$ и окружим ее окрестностью $Delta_{1}=(x-varepsilon_{1};x+varepsilon_{1})$, где $varepsilon_{1}<1$. Мы предположили, что утверждение теоремы Бэра не верно. Значит $Delta_{1} cap H not subset F_{1}$. Выберем в $Delta_{1} cap H$ точку $x_{2}notin F_{1}$. Окружим $x_{2}$ интервалом $Delta_{2}=(x_{2}-varepsilon_{2};x_{2}+varepsilon_{2})$ таким, что концы этого интервала — точки $x_{2}-varepsilon_{2}$ и $x_{2}+varepsilon_{2}$ лежат в $Delta_{1}$, а $varepsilon_{2}<frac{1}{2}$. По предположению $Delta_{2}cap Hnotin F_{2}$. Это позволяет выбрать в $Delta_{2} cap H$ некоторую точку $x_{3} notin F_{2},...$ Продолжая процесс, мы построим вложенную стягивающуюся последовательность интервалов $Delta_{1}supset Delta_{2}supset ...$ Ясно, что

$x_{1}-varepsilon_{1}< x_{2}-varepsilon_{2}<...<x_{n}-varepsilon_{n}...$, (1)
$x_{1}+varepsilon_{1}>x_{2}+varepsilon_{2}>...>x_{n}+varepsilon_{n}...$ (2)

Так как каждый промежуток $Delta_{i}cap Hneq varnothing$, то $lim _{ito infty}(x_{i}-varepsilon_{i})=lim_{itoinfty} (x_{i}+varepsilon_{i})=y, yin H$, а из (1) и (2) следует, что $yin Delta_{i}$ для каждого $i$. Таким образом мы нашли точку $y in H$, но не лежащую ни в одном из множеств
$F_{i} phantom{1} (i=1,2,...)$.

Скажем, что точка на действительной прямой правильная, если в некоторой окрестности этой точки функция $f(x)$ — многочлен. Множество всех правильных точек обозначим символом $E$. Множество $E'$, дополнительное к $E$ обозначим через $F$ и назовем множеством неправильных точек. (Будем говорить, что если $xin F$, то $x$ — неправильная точка).

Читать полностью »

Недавно мы рассказали о способе наглядного представления однокубитных состояний — сфере Блоха. Всем чистым состояниям соответствуют точки на поверхности сферы Блоха, а смешанным — точки внутри нее. В этой публикации мы постараемся объяснить, что на самом деле представляют собой чистые и смешанные состояния.

Основы квантовых вычислений: чистые и смешанные состояния - 1Читать полностью »

Неисчислимое: в поисках конечного числа - 1

Древние греки — приверженцы концепций, имеющих строгий логический смысл — всячески избегали концепции бесконечности. Действительно, какое нам дело до бесконечного ряда чисел, если ни записать, ни представить его мы не можем.

В средние века логическую строгость отбросили ради математических результатов и разработали чрезвычайно эффективные алгоритмические методы, оперирующие в вычислениях бесконечностью.

В XX в. стала отчетливо проступать другая проблема. С бесконечностью мы можем разобраться при помощи одного символа (∞), но что делать с числами, которые меньше бесконечности, но при этом невообразимо огромны?

Мы вплотную подошли к числам, едва уступающим «уроборосу», но при этом все еще имеющим теоретическое и практическое значение. Вы, вероятно, могли слышать о числе Грэма, которое является верхней границей для решения определенной проблемы в теории Рамсея. Спустя 88 лет после появления теоремы Рамсея математики готовы отбросить старые методы и пойти еще дальше.

Добро пожаловать в кроличью нору без дна.
Читать полностью »

Как пронумеровать все двоичные деревья? Как на КДПВ: “дерево” из одного листа будет первым, дерево из двух листов вторым, второе дерево с ещё одной веткой, исходящей из корня – третьим. А как найти номер произвольного дерева в такой схеме?

КДПВ
Читать полностью »

В прошлой статье мы рассмотрели простейшую линейную генеративную модель PPCA. Вторая генеративная модель, которую мы рассмотрим — Generative Adversarial Networks, сокращенно GAN. В этой статье мы рассмотрим самую базовую версию этой модели, оставив продвинутые версии и сравнение с другими подходами в генеративном моделировании на следующие главы.

Generative adversarial networks - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js