Рубрика «математика» - 85

Предисловие

Мне понадобилось вычислять дугу с повышенной точностью на процессоре видеокарты в режиме реального времени.

Автор не ставил перед собой цель превзойти стандартную функцию System.Math.Sin() (C#) и ее не достиг.
Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Опубликованные главы:

 •  Введение в мерфологию
 •  Закон арбузной корки и нормальность ненормальности
 •  Закон зебры и чужой очереди
 •  Проклятие режиссёра и проклятые принтеры

В этой главе мы порассуждаем о деньгах, рынках и энтропии, а также посмотрим на анимированные гифки, которых, увы, в книжке напечатать не получится.

Теория счастья. Термодинамика классового неравенства - 1

Читать полностью »

Символьное решение линейных дифференциальных уравнений и систем методом преобразований Лапласа c применением SymPy - 1

Реализация алгоритмов на языке Python с использованием символьных вычислений очень удобна при решении задач математического моделирования объектов, заданных дифференциальными уравнениями. Для решения таких уравнений широко используются преобразования Лапласа, которые, говоря упрощенно, позволяют свести задачу к решению простейших алгебраических уравнений.
В данной публикации предлагаю рассмотреть функции прямого и обратного преобразования Лапласа из библиотеки SymPy, которые позволяют использовать метод Лапласа для решения дифференциальных уравнений и систем средствами Python.
Читать полностью »

Удивительно изящная машинка, дошедшая до нас из тех древних времён, когда не то что Интернета не было, – ещё даже компьютеров не было. Несколько характеристик Sub-Zero, на которые в своё время делали акцент продвигавшие его маркетологи: (1) работает с числами ± 999999; (2) складывает и вычитает за считанные секунды; (3) никогда не ошибается; (4) удивительно прост в использовании; (5) работает бесшумно; (6) изготовлен из высококачественных материалов, отвечающих германским стандартам; (7) не изнашивается. Создан, чтобы жить долго.

Так что же это за машинка? Каким образом она осуществляет вычисления? Какая у неё начинка? Как ей пользоваться для сложения и вычитания? И вообще, кто её придумал? Обо всём об этом читайте ниже.

Sub-Zero: антикварный механический калькулятор. Как им пользоваться (с приветом из 18-го века) - 1

Читать полностью »

Два математика утверждают, что нашли дыру в самом сердце доказательства, вот уже шесть лет сотрясающего математическое сообщество

Титаны от математики схлестнулись над эпичным доказательством abc-гипотезы - 1

В отчёте, опубликованном в сентябре 2018 в интернете, Петер Шольце из Боннского университета и Якоб Стикс из Университета имени Гёте во Франкфурте описали то, что Стикс называет «серьёзным, и невосполнимым разрывом» в огромной серии объёмных работ Синъити Мотидзуки, знаменитого гениального математика из Киотского университета. Опубликованные в интернете в 2012 году работы Мотидзуки якобы доказывают abc-гипотезу, одну из наиболее далеко идущих задач в теории чисел.
Читать полностью »

Предыстория

Принцип наименьшего действия в аналитической механике - 1

Причина данной публикации — неоднозначная статья на тему принципа наименьшего действия (ПНД), опубликованная на ресурсе несколько дней назад. Неоднозначна она потому, что её автор в популярной форме пытается донести до читателя один из основополагающих принципов математического описания природы, и это частично ему удается. Если бы не одно но, притаившееся в конце публикации. Под спойлером приведена полная цитата данного отрывка

Задача о движении шарика

Не все так просто

На самом деле я немного обманул, сказав, что тела всегда двигаются так, чтобы минимизировать действие. Хотя в очень многих случаях это действительно так, можно придумать ситуации, в которых действие явно не минимально.

Например, возьмем шарик и поместим его в пустое пространство. На некотором отдалении от него поставим упругую стенку. Допустим, мы хотим, чтобы через некоторое время шарик оказался в том же самом месте. При таких заданных условиях шарик может двигаться двумя разными способами. Во-первых, он может просто оставаться на месте. Во-вторых, можно его толкнуть по направлению к стенке. Шарик долетит до стенки, отскочит от нее и вернется обратно. Понятно, что можно толкнуть его с такой скоростью, чтобы он вернулся в точно нужное время.

image

Оба варианта движения шарика возможны, но действие во втором случае получится больше, потому что все это время шарик будет двигаться с ненулевой кинетической энергией.

Как же спасти принцип наименьшего действия, чтобы он был справедлив и в таких ситуациях? Об этом мы поговорим в следующий раз.

Так в чем же, с моей точки зрения, проблема?
Читать полностью »

Теория игр — математическая дисциплина, рассматривающая моделирование действий игроков, которые имеют цель, заключающуюся в выбор оптимальных стратегий поведения в условиях конфликта. На Хабре эта тема уже освещалась, но сегодня мы поговорим о некоторых ее аспектах подробнее и рассмотрим примеры на Kotlin.
Читать полностью »

Наш опыт использования вычислительного кластера из 480 GPU AMD RX 480 при решении математических задач. В качестве задачи мы взяли доказательство теоремы из статьи профессора Чуднова А.М. “Циклические разложения множеств, разделяющие орграфы и циклические классы игр с гарантированным выигрышем“. Задача заключается в поиске минимального числа участников одной коалиции в коалиционных играх Ним-типа, гарантирующее выигрыш одной из сторон.

Секреты невозможных вычислений на GPU - 1
Читать полностью »

Принцип наименьшего действия. Часть 1 - 1
Когда я впервые узнал об этом принципе, у меня возникло ощущение какой-то мистики. Такое впечатление, что природа таинственным образом перебирает все возможные пути движения системы и выбирает из них самый лучший.

Сегодня я хочу немного рассказать об одном из самых замечательных физических принципов – принципе наименьшего действия.
Читать полностью »

Не секрет, что финансовая информация (счета, проводки и прочая бухгалтерия) не очень дружит с числами с плавающей точкой, и множество статей рекомендует использовать фиксированную точку (fixed point arithmetic). В Java этот формат представлен, по сути, только классом BigDecimal, который не всегда можно использовать по соображениям производительности. Приходится искать альтернативы. Эта статья описывает самописную Java библиотеку для выполнения арифметических операций над числами с фиксированной точностью. Библиотека была создана для работы в высокопроизводительных финансовых приложениях и позволяет работать с точностью до 9 знаков после запятой при сохранении приемлемой производительности. Ссылка на исходники и бенчмарки приведены в конце статьи.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js