Рубрика «математика» - 81

Построение орбит небесных тел средствами Python - 1

Системы отсчёта для определения орбиты

Для нахождения траекторий относительных движений в классической механике используется предположение об абсолютности времени во всех системах отсчета (как инерциальных, так и неинерциальных).

Используя данное предположение, рассмотрим движение одной и той же точки в двух различных системах отсчета К и К', из которых вторая движется относительно первой с произвольной скоростью Построение орбит небесных тел средствами Python - 2 — радиус-вектор, описывающий положение точки начала системы координат К' относительно системы отсчета К).

Будем описывать движение точки в системе К' радиус-вектором Построение орбит небесных тел средствами Python - 3, направленным из начала координат системы К' в текущее положение точки. Тогда движение рассматриваемой точки относительно системы отсчета К описывается радиус-вектором Построение орбит небесных тел средствами Python - 4:

Построение орбит небесных тел средствами Python - 5 (1)

а относительная скорость Построение орбит небесных тел средствами Python - 6

Построение орбит небесных тел средствами Python - 7 (2)
Читать полностью »

image

Сегодня утром на пути к кампусу Беркли я провёл пальцами по листьям ароматного куста, а затем вдохнул знакомый запах. Я делаю так каждый день, и каждый день первое слово, которое всплывает в голове и приветственно машет рукой — это шалфей (sage). Но я знаю, что это растение — не шалфей, а розмарин, поэтому я приказываю шалфею успокоиться. Но слишком поздно. После rosemary и sage я не могу помешать появлению на сцене петрушки (parsley) и чабреца (thyme), после чего в голове возникают первые ноты мелодии и лица на обложке альбома, и вот я уже снова оказался в середине 1960-х, одетый в рубашку с огурцами. Тем временем розмарин (rosemary) вызывает в памяти Роуз Мэри Вудс (Rosemary Woods) и 13-минутный пробел (хотя теперь, проконсультировавшись с коллективной памятью, я знаю, что это должны быть Роуз Мэри Вудс и пробел в 18 с половиной минут). От Уотергейта я перепрыгиваю к историям на главной странице. Потом я замечаю в ухоженном саду ещё одно растение с пушистыми серо-зелёными листями. Это тоже не шалфей, а чистец (lamb’s ear). Тем не менее, sage наконец получает свою минуту славы. От трав я переношусь к математическому ПО Sage, а потом к системе противовоздушной обороны 1950-х под названием SAGE, Semi-Automatic Ground Environment, которой управлял самый крупный из когда-либо построенных компьютеров.

В психологии и литературе подобные мыслительные блуждания называются потоком сознания (автор этой метафоры — Уильям Джеймс). Но я бы выбрал другую метафору. Моё сознание, насколько я ощущаю, не течёт плавно от одной темы к другой, а скорее порхает по ландшафту мыслей, больше похожее на бабочку, чем на реку, иногда прибиваясь к одному цветку, а затем к другому, иногда уносимая порывами ветка, иногда посещающая одно и то же место снова и снова.
Читать полностью »

Любой кто когда-нибудь интересовался фондовыми или криптовалютными рынками видел эти дополнительные линии. И вы наверно слышали мнения от матерых трейдеров о том, что они не работают и как они не используют ничего. Но многим они очень помогают и мой торговый терминал, в который я лениво смотрю раз в день, выглядит примерно как на картинке ниже.

Как же все таки они устроены? И кому это может быть полезно? Вам определенно с этим следует ознакомиться, если:

  1. Вы ими пользуетесь в своей торговле
  2. Вы планируете написать торгового робота
  3. Вы хотите реализовать торговую стратегию сами

image
Читать полностью »

Как жульничать при игре в кости – советы игрового эксперта - 1

Недавно археологи раскопали игровой кубик 600-летнего возраста, который, вероятно, использовался для жульничества. На гранях деревянного кубика из средневековой Норвегии находились две пятёрки, две четвёрки, тройка и шестерка – а единички и двойки не было. Считается, что этот кубик использовался для обмана при игре в кости, а не в какой-то особой игре, в которой нужны были определённые комбинации чисел.

Сегодня подобные кубики известны, как «верхи и низы» [tops and bottoms]. Они полезны для нечестной игры, если вы склонны к подобным действиям, хотя не гарантируют постоянного выигрыша, и не выдерживают тщательного осмотра со стороны подозрительных соперников (им стоит только попросить рассмотреть кубик – и вас раскроют). Но при игре в кости есть несколько других вариантов жульничества, о некоторых из которых я вам расскажу.

Стоит отметить, что эти методы запрещено использовать в казино, и я не рекомендую вам использовать их в подобных заведениях – это лишь интересный метод изучения вероятностей.
Читать полностью »

CRDT: Conflict-free Replicated Data Types - 1

Как считать хиты страницы google.com? А как хранить счётчик лайков очень популярных пользователей? В этой статье предлагается рассмотреть решение этих задач с помощью CRDT (Conflict-free Replicated Data Types, что по-русски переводится примерно как Бесконфликтные реплицированные типы данных), а в более общем случае — задачи синхронизации реплик в распределённой системе с несколькими ведущими узлами.
Читать полностью »

Привет!

Недавно решал задачи с архива Timus Online Judge и наткнулся на раздел под названием задачи динамического программирования. Задачи такого типа вызывают у меня особый интерес, потому что зачастую такой подход обеспечивает быстроту и элегантность решения. Что же такое — динамическое программирование?

Динамическое программирование — это подход к решению задач, при котором происходит разбение на подзадачи, которые «проще» в сравнении с исходной. Слово «динамический» близко по значению к «индуктивный»: предполагается, что известен ответ для какого-то значения $k$, и хочется найти ответ для $k+1$. В математике это называется индуктивным переходом, и составляет основную идею динамического программирования.

Простые примеры

Наиболее яркой и показательной задачей является задача вычисления $n$-ого числа последовательности Фибоначчи. Читать полностью »

Рассказать подробно про все методы конечно же очень трудно, но мне эта тема кажется интересной и чрезвычайно важной, поскольку с задачей нахождения решения все сталкиваются достаточно часто. В первой статье Почему Гаусс? был описан метод Гаусса (в том числе с модификацими) и некоторые итерационные методы. Однако, учитывая критику Sinn3r, я решил описать и другие методы.
Читать полностью »

Расчёт волновых процессов в гидравлической линии методом характеристик - 1

Привет! В этой статье я расскажу про создание математической модели длинного трубопровода для CAE-программы SimulationX на языке Modelica. Речь пойдёт о расчёте волновых процессов (пульсации давления, гидроудар и т.п.) в гидравлической линии методом характеристик. Несмотря на то, что этот метод довольно старый, в рунете довольно мало информации о его применении для решения прикладных задач.

Под катом я постараюсь объяснить зачем вообще нужно учитывать волновые процессы в трубопроводах, осветить проблемы, с которыми я столкнулся при программировании и в конце приведу сравнение процесса пульсаций давления при работе трёхплунжерного водяного насоса высокого давления на простой длинный трубопровод в модели и на стенде фирмы URACA в Германии.
Читать полностью »

Три дня назад я задумался об объединении сортировки подсчётом и деревом. Обсудив её с коллегой, пришли к следующему решению: вместо TreeSet использовать HashMap (при чём здесь вообще TreeSet, можно посмотреть ниже). Но и этого мне показалось мало, так что я решил реализовать собственную хэш-таблицу и посмотреть, что из этого выйдет. Результаты показались мне довольно интересными интересными.
Читать полностью »

Введение:

При математическом моделировании ряда технических устройств используются системы дифференциальных нелинейных уравнений. Такие модели используются не только в технике, они находят применение в экономике, химии, биологии, медицине, управлении.

Исследование функционирования таких устройств требуют решения указанных систем уравнений. Поскольку основная часть таких уравнений являются нелинейными и нестационарными, часто невозможно получить их аналитическое решение.

Возникает необходимость использовать численные методы, наиболее известным из которых является метод Рунге — Кутты [1]. Что касается Python, то в публикациях по численным методам, например [2,3], данных по применение Рунге — Кутты крайне мало, а по его модификации — методу Рунге-Кутта-Фельберга вообще нет.

В настоящее время, благодаря простому интерфейсу, наибольшее распространение в Python имеет функцию odeint из модуля scipy.integrate. Вторая функция ode из этого модуля реализует несколько методов, в том числе и упомянутый пятиранговый метод Рунге-Кутта-Фельберга, но, вследствие универсальности, имеет ограниченное быстродействие.

Целью настоящей публикации является сравнительный анализ перечисленных средств численного решения систем дифференциальных уравнений с модифицированным автором под Python методом Рунге-Кутта-Фельберга. В публикации так же приведены решения по краевым задачам для систем дифференциальных уравнений (СДУ).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js