Рубрика «математика» - 43

В статье пойдет речь об опыте разработки программы для составления эффективного портфеля облигаций с точки зрения минимизации его дюрации. Возможно, я не буду оригинален и для всех, кто инвестирует в облигации вопросы определения оптимальных весов давно решены, но все же, надеюсь, описанный подход и приведенный программный код будут кому-то полезны.

Статья, ввиду наличия в ней не малого объема математики, кому-то может показаться усложненной. Но если уж Вы решили заняться инвестициями, то нужно быть готовым к тому, что в финансовой реальности часто встречается математика и еще значительно сложнее.

Исходные коды программы и пример портфеля для оптимизации выложены на GitHub.

Итак, имеем задачу сформировать эффективный портфель облигаций.
Читать полностью »

Алгоритм Левенберга-Марквардта прост. Алгоритм Левенберга-Марквардта эффективен.

А еще о нем говорят, что он где-то посередине между градиентным спуском и методом Ньютона, что бы это не значило. Ну, с методом Ньютоном и его связью с градиентным спуском вроде как разобрались. Но что имеют ввиду когда произносят эту глубокомысленную фразу? Попробуем слегка подразобраться.
Читать полностью »

Когда кластеры достигают размеров в сотни, а иногда и тысячи машин, возникает вопрос о согласованности состояний серверов относительно друг друга. Алгоритм распределённого консенсуса Raft даёт самые строгие гарантии консистентности из возможных. В этой статье мы рассмотрим Raft с точки зрения инженера и постараемся ответить на вопросы «Как?» и «Почему?» он работает.

Как сервера договариваются друг с другом: алгоритм распределённого консенсуса Raft - 1

Читать полностью »

Введение

Имитационное обучение с использованием мультимедийных образовательных ресурсов является одним из перспективных направлений информатизации современного образования. Под имитационным обучением мы будем понимать такую модель обучения, в которой посредством программного обеспечения виртуально воспроизводятся физические процессы и условия, аналогичные реальным, но имеющие ряд идеализированных качеств. Возможность интерактивного взаимодействия с виртуальной моделью того или иного физического процесса позволяет существенно понизить уровень абстракции знаний о данном процессе, в результате чего повышается эффективность получения и усвоения этих знаний человеком [1].

Объект изучения и постановка задачи

В качестве объекта изучения рассмотрим один из наиболее важных разделов общей физики – классическую термодинамику. В контексте образовательной деятельности знания по данной дисциплине преподаются в нескольких формах, Читать полностью »

Каждый автор переживает за жизнь своей публикации, после опубликования смотрит статистику, ждет и беспокоится за комментарии, желает, чтобы публикация набрала хотя бы среднее число просмотров. У Хабра эти инструменты кумулятивные и поэтому достаточно сложно представить, как публикация автора начинает свою жизнь на фоне других публикаций.

Как известно, основная масса публикаций набирает просмотры в первые три дня. Чтобы представить, как живет публикация, я отследил статистику и представил механизм мониторинга и сравнения. Данный механизм будет применен к этой публикации и все смогут посмотреть, как это работает.

Первым этапом была собрана статистика о динамике публикаций за три первых дня жизни поста. Для этого анализировал потоки читателей, по публикациям за 28 сентября в период их жизни с 28 сентября по 1 октября 2019 г. путем фиксирования количества просмотров через различные промежутки времени в этот период. Первая диаграмма представлена на рисунке ниже, она получена в результате согласования динамики просмотров по времени.

Как можно посчитать из диаграммы, среднее число просмотров публикации через 72 часа при степенной функции аппроксимации составит ориентировочно 8380 просмотров.

Первые три дня жизни поста на Хабре - 1
Рис. 1. Распределение просмотров по времени, для всех публикаций.
Читать полностью »

О методах численной оптимизации написано много. Это и понятно, особенно на фоне тех успехов, которые в последнее время демонстрируют глубокие нейронные сети. И очень отрадно, что хотя бы часть энтузиастов интересуется не только тем, как забомбить свою нейросеточку на набравшей в этих ваших интернетах популярность фреймворках, но и тем, как и почему все это вообще работает. Однако мне в последнее время пришлось отметить, что при изложении вопросов, связанных с обучением нейросетей (и не только с обучением, и не только сетей), в том числе на Хабре, все чаще впроброс используется ряд “хорошо известных” утверждений, справедливость которых, мягко говоря, сомнительна. Среди таких сомнительных утверждений:

  1. Методы второго и более порядков плохо работают в задачах обучения нейросетей. Потомучто.
  2. Метод Ньютона требует положительной определенности матрицы Гессе (вторых производных) и поэтому плохо работает.
  3. Метод Левенберга-Марквардта — компромисс между градиентным спуском и методом Ньютона и вообще эвристичекий.

и т.д. Чем продолжать этот список, лучше перейдем к делу. В этом посте рассмотрим второе утверждение, поскольку его я только на Хабре встречал как минимум дважды. Первый вопрос затрону только в той части, что касается метода Ньютона, поскольку он куда более обширен. Третий и остальные оставим до лучших времен.
Читать полностью »

Возникла нужда проверить, является ли целое число квадратом, и если да, то вычислить корень. Причем хочется сделать это в целочисленной арифметике. Понятно, что можно реализовать метод Ньютона в целых числах, но он требует деления на каждом шаге. А нельзя ли по другому? Найти квадратный корень по модулю степени двойки, и проверить, а не будет ли он обычным квадратным корнем.
Читать полностью »

Вычисление логарифмов довольно распространённая операция в цифровой обработке сигналов. Чаще пожалуй приходится считать только свёртки (умножение с накоплением) и амплитуды с фазами. Как правило для вычисления логарифмов на FPGA применяется алгоритм CORDIC в гиперболическом варианте, требующий только таблицы и простых арифметических операций. Однако это не всегда бывает удобно, особенно если проект большой, кристалл маленький и начинаются танцы с оптимизацией. Именно с такой ситуацией и пришлось мне однажды столкнуться. Оба порта блока RAM (Cyclone IV) уже плотненько были в работе, не оставляя свободных окон. Использовать ещё один блок под гиперболический CORDIC не хотелось. Зато был умножитель, для которого во временной диаграмме получалось приличное свободное окно. Денёк подумав, я сочинил следующий алгоритм, в котором не используется таблиц, но есть умножение, точнее возведение в квадрат. И поскольку схемотехнически возведение в квадрат проще общего случая умножения, возможно этот алгоритм представляет интерес для специализированных микросхем, хотя для FPGA разницы конечно нет. Подробнее под катом.Читать полностью »

Вступление

Бывало когда-нибудь такое, что вы хотите просуммировать какой-то бесконечный ряд, но не можете подобрать частичную сумму ряда? Вы все ещё не пользовались дискретной производной? Тогда мы идём к вам!

Определение

Дискретной производной последовательности $a_n$ назовем такую последовательность $Delta a_n$, что для любых натуральных $n>1$ выполняется:

$Delta a_n=a_n - a_{n-1}$

Рассмотрим примеры:

  • $a_n=1\ Delta a_n=a_n - a_{n-1}=1 - 1=0$

  • $a_n=n\ Delta a_n=a_n - a_{n-1}=n - (n - 1)=1$

  • $a_n=n^2\ a_n=n^2 - (n - 1)^2=n^2 - (n^2 - 2n + 1)=2n-1$

  • $a_n=n^3\ Delta{a_n}=n^3 - (n - 1)^3=3n^2 - 3n + 1$

  • $a_n=k^n\ Delta{a_n}=k^n - k^{n-1}=k^{n-1}(k-1)$

Ну, суть вы поняли. Чем-то напоминает производную функции, правда? Мы поняли как вычислять дискретный производные «простейших» последовательностей. Кхм, но что делать с суммой, разностью, произведением и частным последовательностей? У «обычной» производной есть некоторые правила дифференцирования. Давайте-ка придумаем для дискретной!
Читать полностью »

Гипотеза «чувствительности» ставила в тупик многих выдающихся специалистов по информатике, но её новое доказательство оказалось настолько простым, что один исследователь смог свести его к единственному твиту

Для доказательства 30-летней гипотезы из области информатики хватило двух страничек - 1

Опубликованная этим летом работа ставит точку в почти 30-летней истории гипотезы, касающейся структуры фундаментальных строительных блоков компьютерных схем. Эта гипотеза «чувствительности» годами ставила в тупик многих выдающихся специалистов по информатике, но её новое доказательство оказалось настолько простым, что один исследователь смог свести его к единственному твиту.

«Эта гипотеза была одной из самых раздражающих и позорных открытых задач во всей комбинаторике и теоретической информатике», — писал в своём блоге Скот Ааронсон из Техасского университета в Остине. «Список людей, пытавшихся доказать её, и не сумевших сделать это, представляет собой список самых выдающихся людей в дискретной математике и теоретической информатике», — добавил он в емейле.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js