Рубрика «математика» - 39

Серьёзный прорыв в деле решения гипотезы 60-летней давности проливает свет на то, как при росте случайных систем в них начинает появляться порядок

Математики начинают укрощать «задачу о подсолнухе» - 1

Команда из математиков и специалистов по информатике, наконец, продемонстрировала прогресс в решении, на первый взгляд, простой задачи, терзавшей исследователей почти шесть десятилетий.

Эта задача, поставленная математиками Палом Эрдёшем и Ричардом Радо в 1960-м, касается того, как часто можно ожидать появления узоров, напоминающих подсолнух, в больших наборах объектах – например, в большом количестве точек, рассыпанном на плоскости. И хотя новый результат не решает гипотезу Эрдёша и Радо полностью, он продвигает понимание математиков в вопросе появления удивительно сложных структур в случайных скоплениях. Для этого в работе задачу переформулировали в терминах компьютерной функции, воспользовавшись преимуществами становящейся всё более тесной взаимосвязи между теоретической информатикой и чистой математикой.
Читать полностью »

Как поймать свет с помощью пены: пенно-фотонная сеть - 1

В далеком 1887 году шотландский физик Уильям Томсон предложил свою геометрическую модель структуры эфира, который якобы являлся всепроникающей средой, колебания которой проявляются для нас как электромагнитные волны, в том числе и свет. Несмотря на полный провал теории эфира, геометрическая модель продолжила свое существование, и в 1993 году Денис Уэйр и Роберт Фелан предложили более совершенную модель структуры, способной максимально заполнить пространство. С тех пор эта модель интересовала по большей степени математиков или художников, но недавнее исследование показало, что она может стать основой будущих технологий, использующих свет вместо электричества. Что же такое пена Уэйра-Фелана, в чем ее необычность и как можно ее применить для поимки света? На эти и другие вопросы мы найдем ответы в докладе исследовательской группы. Поехали.Читать полностью »

Демистификация принципов квантовых вычислений - 1

«Думаю, я смело могу сказать, что квантовую механику никто не понимает», — Ричард Фейнман

Тема квантовых вычислений всегда привлекала технических писателей и журналистов. Ее потенциал в области вычислений и сложность придали ей некий мистический ореол. Слишком уж часто тематические статьи и инфографика подробно описывают всевозможные перспективы этой отрасли, при этом едва затрагивая вопросы ее практического применения: это может ввести в заблуждение не слишком внимательного читателя.
Читать полностью »

image

Недавно я вернулся к анализу погрешностей чисел с плавающей запятой, чтобы усовершенствовать некоторые детали в следующей редакции книги Physically Based Rendering. Числа с плавающей запятой — интересная область вычислений, полная сюрпризов (хороших и плохих), а также хитрых трюков, позволяющих избавиться от неприятных неожиданностей.

В процессе работы я наткнулся на этот пост на StackOverflow, из которого узнал об изящном алгоритме точного вычисления $a times b-c times d$.

Но прежде чем приступать к алгоритму, нужно понять, что же такого хитрого в выражении $a times b-c times d$? Возьмём $a=33962.035$, $b=-30438.8$, $c=41563.4$ и $d=-24871.969$. (Это реальные значения, которые получились у меня во время запуска pbrt.) При 32-битных значениях float получаем: $a times b=-1.03376365 times 10^9$ и $c times d=-1.03376352 times 10^9$. Выполняем вычитание, и получаем $-128$. Но если выполнить вычисления с двойной точностью, а в конце преобразовать их во float, то получится $-75.1656$. Что произошло?

Проблема в том, что значение каждого произведения может сильно выйти за нижнюю границу $-1 times 10^9$, где расстояние между представимыми значениями с плавающей запятой очень велико — 64. То есть при округлении $a times b$ и $c times d$ по отдельности до ближайшего представимого float, они превращаются в числа, кратные 64. В свою очередь, их разность будет кратной 64, и не останется никакой надежды, что она станет к $-75.1656$ ближе, чем $-64$. В нашем случае результат оказался ещё дальше из-за того, как два произведения были округлены в $-1 times 10^9$. Мы напрямую столкнёмся со старым добрым катастрофическим сокращением1.
Читать полностью »

Какой следующий член…? — Ищем формулу для n-го члена последовательности, производящие функции и Z-преобразование - 1Скачать файл с кодом и данные можно в оригинале поста в моем блоге

В языке Wolfram Language есть четыре совершенно потрясающие функции: FindSequenceFunction, RSolve, DifferenceRootReduce и FindFormula. В этой статье мы обсудим их возможности и поговорим о функциях, тесно с ними связанных — для поиска параметров линейной рекурсии FindLinearRecurrence (коэффициентов линейного рекуррентного уравнения), производящих функциях GeneratingFunction и Z-преобразовании ZTransform.

Первая функция — FindSequenceFunction — по последовательности чисел ищет выражение для её n-го члена не требуя вообще ничего более.

Hold @ FindSequenceFunction[{1, 1, 2, 3, 5, 8, 13}, n]

Какой следующий член…? — Ищем формулу для n-го члена последовательности, производящие функции и Z-преобразование - 2

FindSequenceFunction[
{-2, 4Sqrt[Pi],
-16, 16Sqrt[Pi],
-128/3, 32Sqrt[Pi],
-1024/15, 128Sqrt[Pi]/3,
-8192/105, 128Sqrt[Pi]/3},
n]

Какой следующий член…? — Ищем формулу для n-го члена последовательности, производящие функции и Z-преобразование - 3
Читать полностью »

image

Одна из самых труднорешаемых задач в системах автоматизированного проектирования – скругления при моделировании объектов сложных форм. За построение скруглений, как и за всю геометрию в САПР, отвечает геометрическое ядро.

С точки зрения разработчика ядра охватить все варианты скруглений невозможно ввиду их бесконечного разнообразия. Наши математики постоянно добавляют в ядро C3D новые частные случаи, а недавно сделали скругление трех граней (или полное скругление).

В чем его сложность и как работает алгоритм, рассказывает Анна Ладилова, математик-программист C3D Labs.
Читать полностью »

image

Пара предупреждений читателю:

Для того, чтобы (насколько это возможно) упростить процесс объяснения и сжать объем публикации, стоит сразу же сделать ключевую оговорку — все, что мы пишем, касаемо практической стороны рассматриваемой проблематики, корректно для протокола TLS версии 1.3. Это значит, что хотя ваш ECDSA сертификат и будет, при желании, работать с TLS 1.2, описание процесса хендшейка, наборов шифров и бенчмарков сделано на основании последней версии протокола TLS — 1.3. Как вы понимаете, это не относится к математическому описанию алгоритмов, лежащих в фундаменте современных криптографических систем.

Данный материал был написан не математиком и даже не инженером — хотя они и помогали проложить дорожку сквозь математические дебри. Огромная благодарность сотрудникам Qrator Labs.

(Elliptic Curve) Diffie-Hellman (Ephemeral)

Наследие Диффи — Хеллмана в XXI веке

Естественным образом, данная тема начинается не с Уитфилда Диффи и не с Мартина Хеллмана. Алан Тьюринг и Клод Шеннон сделали огромный вклад в теорию алгоритмов и теорию информации, равно как и в область криптоанализа. Диффи и Хеллман, в свою очередь, официально признаются авторами идеи криптографии с публичным ключом (также называемой асимметричной) — хотя теперь известно, что в Великобритании были также достигнуты серьезные результаты в этой области. Однако они оставались засекреченными длительное время — что делает двух джентльменов, упомянутых в подзаголовке, первопроходцами.

В чем именно?
Читать полностью »

Зачем

О ситуации с котом Шредингера, наверно, имеет представление большинство хабровцев, интересующихся физикой. Поэтому я не буду ее излагать. Дискуссия ведется вокруг интерпретации состояния кота. Вот альтернативы:

  1. Кот “И жив И мертв”. Это описывается в квантовой механике как суперпозиция состояний “жив” и “мертв” и, значит, возможны какие-то интерференционные эффекты, подобно случаю рассеяния света на двух щелях.
  2. Кот “ИЛИ жив ИЛИ мертв”. Эта трактовка запрещает вышеуказанную суперпозицию и, значит, запрещает интерференционные эффекты.

Моя задача изложить точку зрения, вытекающую, как мне кажется, из чтения книги “Квантовая механика” Фейнмана.
Читать полностью »

Почему Солнце вращается вокруг Земли - 1

В России одна известная организация под названием ВЦИОМ проводила социологическое исследование, на котором гражданам предлагали ответить на вопрос: «Согласны ли вы со следующим утверждением: Солнце вращается вокруг Земли?» Данные этого опроса многократно перепечатываются в СМИ, и на различных сетевых ресурсах в комментариях часто ссылаются на него при обсуждении различных общественно-политических проблем.

Если бы я принял участие в этом опросе, я бы, скорее всего, был среди тех 30%, кто ответил утвердительно. Ниже я постараюсь объяснить, почему.

Читать полностью »

Книга Алана Тьюринга и загадочная записка — Научный детектив - 1
Оригинал перевода в моём блоге

Как ко мне попала эта книга?

В мае 2017 года я получил электронное письмо от моего старого учителя средней школы по имени Джордж Раттер, в котором он писал: «У меня есть копия большой книги Дирака на немецком языке (Die Prinzipien der Quantenmechanik), которая принадлежала Алану Тьюрингу, и после того как я прочел вашу книгу Создатели идей (Idea Makers), мне показалось само собой разумеющимся, что вы именно тот человек, которому она нужна». Он объяснил мне, что получил книгу от другого (к тому времени умершего) моего школьного учителя Нормана Рутледжа, о котором я знал, что он был другом Алана Тьюринга. Джордж закончил свое письмо фразой: «Если вам нужна эта книга, я мог бы вручить ее вам в следующий раз, когда вы приедете в Англию».

Спустя пару лет в марте 2019 года я действительно прибыл в Англию, после чего договорился с Джорджем о встрече за завтраком в небольшом отеле в Оксфорде. Мы ели, болтали и ждали, пока еда уляжется. Затем настал подходящий момент для обсуждения книги. Джордж сунул руку в портфель и вытащил довольно скромно оформленный, типичный академический томик середины 1900-х годов.

Книга Алана Тьюринга и загадочная записка — Научный детектив - 2

Я открыл обложку, размышляя, не может ли на ней быть с обратной стороны надписи: «Собственность Алана Тьюринга» или чего-то в этом духе. Но, к сожалению, это оказалось не так. Тем не менее к ней была приложена достаточно выразительная записка на четырех листах от Нормана Рутледжа к Джорджу Раттеру, написанная в 2002 году.

Я знал Нормана Рутледжа, когда еще был учеником средней школы в Итоне в начале 1970-х годов. Он был учителем математики по прозвищу «Чокнутый Норман». Он был приятным во всех отношениях преподавателем и рассказывал бесконечные байки о математике и о всяких других занимательных вещах. Он был ответственным за то, чтобы школа получила компьютер (программируемый с помощью перфоленты шириной с парту) — это был самый первый компьютер, который я когда-либо использовал.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js