Рубрика «математика» - 35

******************* Ну и кто из нас читал «Начала» Ньютона? *****************

Беру в руки журнал “Наука и жизнь” №1 2020. На обложке бросается в глаза вопрос “Почему Эйнштейн самый великий физик?”. Действительно, почему? Открываю статью Евгения Берковича “Трагедия Эйнштейна, или счастливый Сизиф”. Начинается она так: “Кто самый великий физик? Спросите об этом кого угодно, любой вам скажет: Альберт Эйнштейн. Не зря строгий академик Лев Ландау поставил его первым в иерархии физиков”.

Но, господин Беркович, ведь Ландау классифицировал, как мне кажется, только действующих на тот момент физиков. По крайней мере, где бы шкала Ландау не упоминалась, Ньютон там не упоминался. При всей «скромности» Ландау я не могу вообразить, что где-то есть список, составленный им и в котором был бы и Ньютон и сам Ландау.

“Спросите об этом кого угодно…”. Господин Беркович берет на себя смелость отвечать за всех. Ну, кого угодно, так кого угодно — мне угодно взять себя. Беру себя. И отвечаю: самый великий физик это Исаак Ньютон.
Читать полностью »

Доказательство на стыке чистой математики и теории алгоритмов возвышает «квантовую запутанность» на совершенно новый уровень.
Насколько запутанна квантовая система? Ответ может быть невычислим - 1
Квантовая запутанность находится в сердце нового математического доказательства.Credit: Victor De Schwanberg/Science Photo Library

Читать полностью »

Исследователи столетиями искали примеры ситуаций, в которых уравнения Эйлера для гидродинамики идеальной жидкости окажутся неверными. И вот, наконец, такой пример нашли математики.

При сближении колец жидкости в определённых упрощённых случаях описывающие их движения уравнения Эйлера не работают

Математики уже много лет подозревали, что при определённых условиях уравнения Эйлера откажутся работать. Однако они не могли описать конкретный сценарий, в котором это происходит. До сегодняшнего дня.

Эти уравнения представляют собой идеализированное математическое описание движения жидкости. В границах определённых предположений они моделируют распространение волн на пруду или просачивание патоки из банки. Они должны уметь описывать движение любой жидкости в любых условиях – и более двух столетий всё так и было.
Читать полностью »

Эта статья является моим вольным пересказом работы Learnability can be undecidable, Shai Ben-David, et al.

Недавно на Хабре вышла статья Машинное обучение столкнулось с нерешенной математической проблемой, которая является переводом одноименного обзора в Nature News статьи Шай Бен-Давида. Однако, из-за особенностей тематики и краткости оригинального обзора мне осталось совершенно непонятно, что же было в статье. Зная Шай Бен-Давида, как автора прекрасной книги "Understanding Machine Learning: From Theory to Algorithms", я заинтересовался этой темой, ознакомился с этой работой и постарался тут изложить основные моменты.

Сразу скажу, что статья довольно сложная и, возможно, я упустил некоторые важные моменты, но мой обзор будет более полным, чем тот, который уже есть на Хабре.

Читать полностью »

Салют! В преддверии запуска новых потоков по продвинутому и базовому курсам «Математика для Data Science» хотим поделиться с вами достаточно интересным переводом. В этой статье не будет практики, но материал интересен для общего развития и обсуждения.


Группа исследователей столкнулась с открытой математической проблемой, связанной с рядом логических парадоксов, которые были открыты знаменитым австрийским математиком Куртом Гёделем еще в 1930-х годах.

Математики, работавшие над проблемами машинного обучения, доказали, что возможность «обучаемости», то есть то, может ли алгоритм извлечь паттерн из ограниченных данных, тесно связана с парадоксом, известным как гипотеза континуума. Гедель говорил о том, что с помощью стандартных возможностей математического языка гипотезу нельзя ни подтвердить, ни опровергнуть. Последние результаты исследований на эту тему были опубликованы в Nature Machine Intelligence от 7 января.Читать полностью »

image

Основным объектом которым манипулируют в Tensorflow, является тензор. О том, что такое тензор, какие бывают тензоры, какие у них есть свойства и как ими манипулировать читайте в переводном руководстве с сайта tensorflow.org.

Читать полностью »

Созерцание великого фрактального подобия - 1
(с) «Галактика галактик»

Фракталы — не просто красивое природное явление. Согласно проведенным исследованиям, рассматривание фрактальных структур на 60 % повышает стрессоустойчивость, измеряемую на основе физиологических показателей. При созерцании фракталов в лобной коре головного мозга всего за одну минуту увеличивается активность альфа-волн — как во время медитации или при ощущении легкой сонливости.

Неудивительно, что фрактальный биодизайн оказывает на человека умиротворяющее воздействие. Нам нравится смотреть на облака, на языки пламени в камине, на листву в парке… Как это работает? Ученые предполагают, что естественный ход поисковых движений наших глаз — фрактальный. При совпадении размерности траектории движения глаз и фрактального объекта мы впадаем в состояние физиологического резонанса, за счет чего активизируется деятельность определенных участков мозга.

Но не все фракталы одинаково полезны. В данной статье расскажем о фрактальной размерности и о её влиянии на здоровье.
Читать полностью »

При использовании для отображения в браузере библиотеки ThreeJS в качестве первого примера обычно выступает куб или какой-либо другой простейший объект, и он создается при помощи предустановленных специальных классов BoxGeometry или SphereGeometry. Затем обычно рассматривается использование импортируемых готовых моделей и работа с ними.

Но иногда требуется создать трехмерный объект для отображения в браузере полностью с нуля – только используя аналитическую геометрию. В данной статье рассматривается именно такой подход к построению интерактивно настраиваемых моделей и последующего их отображения в браузере.

Читать полностью »

Начало тут.

10-43: Кто-то говорит: «Учёный знает науку, как рыба знает гидродинамику». Тут нет никакого определения Науки. Я открыл для себя (я думаю, что говорил вам об этом ранее), где-то в старшей школе разные учителя говорили мне о различных предметах, и я мог видеть, что разные учителя говорили об одних и тех же предметах по-разному. Более того, в то же время я смотрел на то, что мы делали, и это снова было что-то другое.

Теперь, вы, наверное, сказали: «мы делаем эксперименты, вы смотрите на данные и формируете теории». Это, скорее всего, чепуха. Прежде чем вы сможете собрать нужные данные у вас должна быть теория. Вы не можете просто собрать случайный набор данных: цвета в этой комнате, вид следующей увиденной птицы и т.д., ожидая, что они несут в себе какой-то смысл. Вы должны иметь какую-то теорию, прежде чем собирать данные. Более того, вы не можете интерпретировать результаты экспериментов, которые вы можете сделать, если у вас нет теории. Эксперименты – это теория, прошедшая весь путь от начала до конца. У вас имеются предвзятые представления и вы должны интерпретировать события с учётом этого.
Читать полностью »

Введение

Понимание того, как классификатор разбивает исходное многомерное пространство признаков на множество целевых классов, является важным шагом для анализа любой задачи классификации и оценки решения, полученного с помощью машинного обучения.

Современные подходы к визуализации решений классификаторов в основном либо используют диаграммы рассеивания, которые могут отображать лишь проекции исходных обучающих выборок, но явно не показывают фактические границы принятия решений, либо используют внутреннее устройство классификатора (например kNN, SVM, Logistic Regression) для которых легко построить геометрическую интерпретацию. Такой способ не подойдет для визуализации, например, нейросетевого классификатора.

В статье "Image-based Visualization of Classifier Decision Boundaries" (Rodrigues et al., 2018) предлагается эффективный, красивый и достаточно простой альтернативный метод для визуализации решений классификатора, который лишен вышеописанных недостатков. А именно метод подходит для классификаторов любого вида и строит границы принятия решений с помощью изображений с произвольной частотой дискретизации.

Этот пост — краткий обзор основных идей и результатов из оригинальной статьи.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js