Предисловие
В продолжении "Оценки инсайда в ставках на спорт"Читать полностью »
В продолжении "Оценки инсайда в ставках на спорт"Читать полностью »
Недавно на Хабре вышла статья за авторством MilashchenkoEA Читать полностью »
В ходе моей трудовой деятельности неоднократно возникала необходимость построить кривую плотности распределения вероятности по имеющемуся набору числовых данных большого объема различной природы, как случайных, так и не очень. Бывало и такое, что по некоторым причинам, использовать при этом сторонние библиотеки, решающие вопрос, было нежелательно. Приходилось обходится своими силами.
Некоторое время назад обратились ко мне с вопросом, как сделать программу, которая будет выигрывать в покер. После некоторого количества обсуждений, заказчик не захотел узнавать результат моих размышлений на эту тему, посчитал что дорого. Поэтому я разместил эти свои размышления здесь и за бесплатно.
Сразу оговорюсь, что я в покер не играю, и знаю его хуже чем те, кто играет свои первые партии в жизни. Но может это не так уж и важно?
Рассматриваю тот покер, где в колоде 52 карты: 2-10, В, Д, К, Т и 4 масти. Вероятно это Техаский Холдем. На столе в последнем круге пять карт, и по две карты у игроков.
Вторая часть перевода лонгрида посвященного визуализации концепций из теории информации. Во второй части рассматриваются энтропия, перекрестная энтропия, дивергенция Кульбака-Лейблера, взаимная информация и дробные биты. Все концепции снабжены прекрасными визуальными объяснениями.
Для полноты восприятия, перед чтением второй части, рекомендую ознакомиться с первой.
Перевод интересного лонгрида посвященного визуализации концепций из теории информации. В первой части мы посмотрим как отобразить графически вероятностные распределения, их взаимодействие и условные вероятности. Далее разберемся с кодами фиксированной и переменной длины, посмотрим как строится оптимальный код и почему он такой. В качестве дополнения визуально разбирается статистический парадокс Симпсона.
Теория информации дает нам точный язык для описания многих вещей. Сколько во мне неопределенности? Как много знание ответа на вопрос А говорит мне об ответе на вопрос Б? Насколько похож один набор убеждений на другой? У меня были неформальные версии этих идей, когда я был маленьким ребенком, но теория информации кристаллизует их в точные, сильные идеи. Эти идеи имеют огромное разнообразие применений, от сжатия данных до квантовой физики, машинного обучения и обширных областей между ними.
К сожалению, теория информации может казаться пугающей. Я не думаю, что есть какая-то причина для этого. Фактически, многие ключевые идеи могут быть объяснены визуально!
В статье описывается исследование, проведенное с целью проверки утверждения центральной предельной теоремы о том, что сумма N независимых и одинаково распределенных случайных величин, отобранных практически из любого распределения, имеет распределение, близкое к нормальному. Однако, прежде чем мы перейдем к описанию исследования и более подробному раскрытию смысла центральной предельной теоремы, не лишним будет сообщить, зачем вообще проводилось исследование и кому может быть полезна статья.
В первую очередь, статья может быть полезна всем начинающим постигать основы машинного обучения, в особенности если уважаемый читатель еще и на первом курсе специализации «Машинное обучение и анализ данных». Именно подобного рода исследование требуется провести на заключительной неделе первого курса, указанной выше специализации, чтобы получить заветный сертификат.
Читать полностью »
Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.
Речь в этой главе пойдёт о статистике, о погоде и даже о философии. Не пугайтесь, совсем чуть-чуть. Не более того, что можно использовать для tabletalk в приличном обществе.
Или: Как переход от публикации P-значений к публикации функций правдоподобия поможет справиться с кризисом воспроизводимости: личное мнение Элиезера Юдковского.
Комментарий переводчика: Юдковский, автор HPMOR, создатель Lesswrong и прочая и прочая, изложил свою позицию по поводу пользы байесовской статистики в естественных науках в форме диалога. Прямо классический такой диалог из античности или эпохи возрождения, с персонажами, излагающими идеи, обменом колкостями вперемешку с запутанными аргументами и неизбежно тупящим Симплицио. Диалог довольно длинный, минут на двадцать чтения, но по-моему, он того стоит.
Если вы ещё не знакомы с правилом Байеса, на сайте Arbital есть подробное введение.
Модератор: Добрый вечер. Сегодня в нашей студии: Учёный, практикующий специалист в области… химической психологии или чего-то типа того; его оппонент Байесовец, который намерен доказать, что кризис воспроизводимости в науке можно как-то преодолеть с помощью замены P-значений на что-то из Байесовской статистики…
Студент: Извините, как это пишется?
Модератор:… и, наконец, ничего не понимающий Студент справа от меня.
Читать полностью »
Выражаясь простым языком, модель регрессии в математической статистике строится на основе известных данных, в роли которых выступают пары чисел. Количество таких пар заранее определено. Если представить себе, что первое число в паре – это значение координаты , а второе – , то множество таких пар чисел можно представить на плоскости в декартовой системе координат в виде множества точек. Данные пары чисел берутся не случайно. На практике, как правило, второе число зависит от первого. Построить регрессию – это значит подобрать такую линию (точнее, функцию), которая как можно точнее приближает к себе (аппроксимирует) множество вышесказанных точек.