Рубрика «математическая статистика»

Документ, лежащий в основе статьи, представляет собой стенограмму семинара, посвящённого вкладу Джона Нэша в теорию игр. Основные участники — выдающиеся учёные в области математики, экономики и биологии, такие как Гарольд Кун, Джон Харшаньи, Рейнхард Зельтен и другие. В центре внимания — достижения Нэша в разработке концепций равновесия для кооперативных и некооперативных игр, а также их влияние на современные экономические и биологические теории.

Введение

Теория игр, как отдельная дисциплина, приобрела известность благодаря книге Джона фон Неймана и Оскара Моргенштерна Читать полностью »

Небольшой фрагмент из таблицы, для иллюстрации

Небольшой фрагмент из таблицы, для иллюстрации

Читать полностью »

Недавно на Хабре вышла статья за авторством MilashchenkoEA Читать полностью »

В ходе моей трудовой деятельности неоднократно возникала необходимость построить кривую плотности распределения вероятности по имеющемуся набору числовых данных большого объема различной природы, как случайных, так и не очень. Бывало и такое, что по некоторым причинам, использовать при этом сторонние библиотеки, решающие вопрос, было нежелательно. Приходилось обходится своими силами.

Читать полностью »

Некоторое время назад обратились ко мне с вопросом, как сделать программу, которая будет выигрывать в покер. После некоторого количества обсуждений, заказчик не захотел узнавать результат моих размышлений на эту тему, посчитал что дорого. Поэтому я разместил эти свои размышления здесь и за бесплатно.

Сразу оговорюсь, что я в покер не играю, и знаю его хуже чем те, кто играет свои первые партии в жизни. Но может это не так уж и важно?

Рассматриваю тот покер, где в колоде 52 карты: 2-10, В, Д, К, Т и 4 масти. Вероятно это Техаский Холдем. На столе в последнем круге пять карт, и по две карты у игроков.

Читать полностью »

Визуальная теория информации (часть 2) - 1

Вторая часть перевода лонгрида посвященного визуализации концепций из теории информации. Во второй части рассматриваются энтропия, перекрестная энтропия, дивергенция Кульбака-Лейблера, взаимная информация и дробные биты. Все концепции снабжены прекрасными визуальными объяснениями.

Для полноты восприятия, перед чтением второй части, рекомендую ознакомиться с первой.

Читать полностью »

Визуальная теория информации (часть 1) - 1

Перевод интересного лонгрида посвященного визуализации концепций из теории информации. В первой части мы посмотрим как отобразить графически вероятностные распределения, их взаимодействие и условные вероятности. Далее разберемся с кодами фиксированной и переменной длины, посмотрим как строится оптимальный код и почему он такой. В качестве дополнения визуально разбирается статистический парадокс Симпсона.

Теория информации дает нам точный язык для описания многих вещей. Сколько во мне неопределенности? Как много знание ответа на вопрос А говорит мне об ответе на вопрос Б? Насколько похож один набор убеждений на другой? У меня были неформальные версии этих идей, когда я был маленьким ребенком, но теория информации кристаллизует их в точные, сильные идеи. Эти идеи имеют огромное разнообразие применений, от сжатия данных до квантовой физики, машинного обучения и обширных областей между ними.

К сожалению, теория информации может казаться пугающей. Я не думаю, что есть какая-то причина для этого. Фактически, многие ключевые идеи могут быть объяснены визуально!

Читать полностью »

Вместо введения

В статье описывается исследование, проведенное с целью проверки утверждения центральной предельной теоремы о том, что сумма N независимых и одинаково распределенных случайных величин, отобранных практически из любого распределения, имеет распределение, близкое к нормальному. Однако, прежде чем мы перейдем к описанию исследования и более подробному раскрытию смысла центральной предельной теоремы, не лишним будет сообщить, зачем вообще проводилось исследование и кому может быть полезна статья.

В первую очередь, статья может быть полезна всем начинающим постигать основы машинного обучения, в особенности если уважаемый читатель еще и на первом курсе специализации «Машинное обучение и анализ данных». Именно подобного рода исследование требуется провести на заключительной неделе первого курса, указанной выше специализации, чтобы получить заветный сертификат.
Читать полностью »

Продолжаю знакомить читателей Хабра с главами из своей книжки «Теория счастья» с подзаголовком «Математические основы законов подлости». Это ещё не изданная научно-популярная книжка, очень неформально рассказывающая о том, как математика позволяет с новой степенью осознанности взглянуть на мир и жизнь людей. Она для тех кому интересна наука и для тех, кому интересна жизнь. А поскольку жизнь наша сложна и, по большому счёту, непредсказуема, упор в книжке делается, в основном, на теорию вероятностей и математическую статистику. Здесь не доказываются теоремы и не даются основы науки, это ни в коем случае не учебник, а то, что называется recreational science. Но именно такой почти игровой подход позволяет развить интуицию, скрасить яркими примерами лекции для студентов и, наконец, объяснить нематематикам и нашим детям, что же такого интересного мы нашли в своей сухой науке.

Речь в этой главе пойдёт о статистике, о погоде и даже о философии. Не пугайтесь, совсем чуть-чуть. Не более того, что можно использовать для tabletalk в приличном обществе.

Теория счастья. Статистика, как научный способ чего-либо не знать - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js