Рубрика «машинное зрение» - 3

Walmart представила магазин с автоматическим отслеживанием запасов - 1

Компания Walmart запустила концептуальный магазин Walmart Intelligent Retail Lab в Нью-Йорке для испытания инновационных идей в торговле. Одна из первых идей, которую тестируют в магазине — отслеживание товаров на полках с помощью камер и системы машинного зрения.

Первоначальная цель магазина заключается в том, чтобы ускорить процесс инвентаризации и доступности продуктов и чтобы команде из 100 человек было проще точно знать, где и когда необходимо пополнять запасы продуктов. Несмотря на то, что это концептуальный магазин, он имеет более 30 000 товаров для продажи и открыт для публики.Читать полностью »

Для тех, кому лень читать всё: предлагается опровержение семи популярных мифов, которые в области исследований машинного обучения часто считаются истинными, по состоянию на февраль 2019. Данная статья доступна на сайте ArXiv в виде pdf [на английском языке].

Миф 1: TensorFlow – это библиотека для работы с тензорами.
Миф 2: Базы данных изображений отражают реальные фотографии, встречающиеся в природе.
Миф 3: Исследователи МО не используют проверочные наборы для испытаний.
Миф 4: В обучении нейросети используются все входные данные.
Миф 5: Для обучения очень глубоких остаточных сетей требуется пакетная нормализация.
Миф 6: Сети с вниманием [attention] лучше свёрточных [convolution].
Миф 7: Карты значимости – надёжный способ интерпретации нейросетей.

А теперь — подробности.
Читать полностью »

Делаем рейтинг городов России по качеству дорог - 1

В очередной раз проезжая на машине по родному городу и объезжая очередную яму я подумал: а везде ли в нашей стране такие «хорошие» дороги и решил — надо объективно оценить ситуацию с качеством дорог в нашей стране.
Читать полностью »

В Office 365 и другие продукты MS добавят режим голосового ввода-вывода для дислексиков - 1

Вчера в блоге Microsoft Education Team была опубликована обширная запись, которая презентует голосового ассистента для пакета продуктов Office 365, а также ряд обновлений других продуктов. В первую очередь речь идет о добавлении функций Dictation for Office 365 Desktop Apps в веб-версии продуктов Office 365 для учащихся, а также выход продукта Office Lens на платформе Android, который ранее был доступен только пользователям iOS. И это не полный список всех «вкусностей» от Microsoft. Все эти активности проходят совместно с организацией Made Dyslexia, в рамках которых технологический гигант планирует создавать учебные материалы и пособия для учеников и студентов, страдающих дислексией.

Важность публикации MS Education Team еще и в том, что она явно показывает один из приоритетных, а главное потенциально конкурентных направлений деятельности компании — развитие систем голосового ввода и распознавания текстов на пользовательских устройствах для всех существующих экосистем, подробнее о которых под катом. Там мы кратко расскажем о новинках от Microsoft без маркетинговых восторгов и обсудим, что вообще происходит и почему когда-то «главная корпорация зла» внезапно оказалась на передовой в области обучения подрастающего поколения.
Читать полностью »

Машинное обучение продолжает проникать в индустрии за пределами интернет-отрасли. На конференции Data&Science «Мир глазами роботов» Александр Белугин из компании «Цифра» рассказал об успехах, сложностях и актуальных задачах на этом пути. Внедрение таких технологий, как компьютерное зрение, требует серийности и продуктового подхода, позволяющего снизить стоимость единичных внедрений. Дело в том, что видов задач на производстве очень много. Из доклада можно узнать о продуктах, мировых трендах и опыте команды Александра в сферах промышленной безопасности и автоматизации процессов.

— Доброе утро. Рад, что все пришли на эту интересную конференцию. Я сначала кратко расскажу про компанию «Цифра», затем — немного о задачах, которые стоят в промышленности, и о типовых способах решения таких задач. Это задачи без роботов, не сборочные, а разные процессные производства. В конце немного рассмотрим наш опыт.
Читать полностью »

Система машинного зрения по трейлеру фильма предсказывает, кто придёт в кинотеатр - 1
Схема гибридной модели рекомендаций Merlin Video для определения аудитории фильмов. Слой логической регрессии сочетает модель коллективной фильтрации с информацией о частоте и сроке посещения кинотеатра, чтобы вычислить вероятность желания посмотреть этот кинофильм. Модель обучена от начала до конца (end-to-end), а потеря функции логической регрессии обратно распространяется по всем обучаемым компонентам

Выход трейлера — самый важный элемент в подготовке кинопремьеры. Зрелищный трейлер повышает рейтинг зрительских ожиданий, знакомит зрителей с сюжетом, представляет главных героев, передаёт общее настроение картины. В то же время по отзывам на трейлер создатели кинокартины получают возможность понять, какие аспекты фильма нравятся или не нравятся зрителям — эта информация обычно становится основой для дальнейшей маркетинговой кампании. Трейлер напрямую коррелирует со сборами в первые дни показа. Затем уже цифра больших сборов в первые дни привлекает внимание массовой аудитории и СМИ, что во многом обеспечивает общий коммерческий успех картины.
Читать полностью »

Машинное зрение – очень актуальная тема в наши дни. Для решения задачи по распознаванию магазинных ценников с использованием нейронных сетей мы выбрали фреймворк TensorFlow.

В статье пойдет речь именно о том, как с его помощью локализовать и идентифицировать несколько объектов на одном магазинном ценнике, а также распознать его содержимое. Похожая задача распознавания ценников IKEA уже решалась на Хабре с применением классических инструментов обработки изображений, доступных в библиотеке OpenCV.

Отдельно хотелось бы отметить, что решение может работать как на платформе SAP HANA в связке с Tensorflow Serving, так и на SAP Cloud Platform.

Задача распознавания цены товара актуальна и для покупателей, которые хотят «шарить» цены друг с другом и выбирать магазин для покупок, и для ритейлеров — они хотят узнавать про цены конкурентов в режиме реального времени.

Хватит лирики – гоу в технику!
Читать полностью »

Введение

Я хочу представить вам результат своих экспериментов с алгоритмами распознавания образов с обучением с первого раза (так называемый One-Shot Learning). В результате экспериментов выработались определённые подходы к структуризации изображения и в итоге они воплотились в несколько взаимосвязанных алгоритмов и тестовое приложение на Android, которым можно проверить качество и работоспособность алгоритмов.

Моя цель была создать алгоритм с понятным принципом работы который может найти абстрактные зависимости в картинке с первого раза (обучиться) и показать приемлемое качество распознавания (поиска подобных абстрактных зависимостей) на последующих циклах распознавания. При этом логика принятия решения должна быть прозрачной, поддающейся анализу, ближе к линейному алгоритму. На условной шкале где на одном конце мозг а на другом станок с ЧПУ он гораздо ближе к станку чем нейросети.

Читать полностью »

Введение

Современный мир трудно представить без видеокамер. Они настолько плотно обосновались в нашей жизни, что стали ее неотъемлемой частью, хотим мы того или нет. Смартфоны, компьютеры, охранные системы и т.д. Список сфер применения можно продолжать долго, но в конечном счете цель преследуется одна — построение изображения исходя из световой информации, поступающей от окружающего мира на фоточувствительный датчик.
Читать полностью »

Привет!

Сегодня я расскажу вам про один из методов решения задачи pose estimation. Задача состоит в детектировании частей тела на фотографиях, а метод называется DeepPose. Этот алгоритм был предложен ребятами из гугла еще в 2014 году. Казалось бы, не так давно, но не для области глубокого обучения. С тех пор появилось много новых и более продвинутых решений, но для полного понимания необходимо знакомство с истоками.

Детектирование частей тела с помощью глубоких нейронных сетей - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js