Рубрика «машинное зрение» - 3

image

Слева два человека жмут руки, причем один из них за стеной от камеры. Справа человек в темноте кидает предмет человеку, который звонит по телефону. Снизу — сгенерированная скелетная модель и предсказание действий.

Про радиозрение команды лаборатории CSAIL (Computer Science and Artificial Intelligence Lab) уже писали на Хабре (раз и два), сегодня немного свежих подробностей.

Алгоритм использует радиоволны, а не видимый свет, чтобы определить, что люди делают, не показывая, как они выглядят.

Машинное зрение имеет впечатляющий послужной список. Оно обладает сверхчеловеческой способностью распознавать людей, лица и предметы. Оно может даже распознавать различные виды действий, хотя и не так хорошо, как люди.

Но его производительность ограничена. Особенно трудно машинному зрению тогда, когда люди, лица или предметы частично закрыты. И когда уровень освещенности падает до 0, они, как и люди, практически слепы.

Но есть и другая часть электромагнитного спектра, которая не настолько ограничена. Радиоволны заполняют наш мир, будь то ночь или день. Они легко проходят сквозь стены, передаются и отражаются человеческими телами. Действительно, исследователи разработали различные способы использования радиосигналов Wi-Fi, чтобы видеть за закрытыми дверями.
Читать полностью »

Привет, это Smart Engines. Десант из 28 разработчиков систем распознавания на основе искусственного интеллекта только что вернулся из Амстердама, где мы принимали участие в международной научной конференции по компьютерному зрению ICMV. В статье мы постараемся объяснить, почему мы так много времени уделяем науке и ездим на научные конференции.

Зачем мы ездим на научные конференции? - 1

Сегодня в мире развития науки и высоких технологий произошла катастрофическая подмена понятий: за науку выдается то, что наукой не является ни в каком приближении, учеными называют программистов и инженеров, наукой называют решение простейших инженерных задач. В информационном пространстве роль фундаментальной науки в развитии технологий явно занижена. Многие забывают, что сенсорный экран айфона — это не сам по себе сенсорный экран айфона, а воплощение в жизнь идей фундаментальных исследований полупроводниковых гетероструктур нашего соотечественника нобелевского лауреата Ж.И. Алферова. Карты Google (или Яндекcа) — это не просто карты в мобильнике, а воплощение фундаментальных исследований в области вычислительной геометрии. И кстати фильм “Аватар” — это тоже на 99% вычислительная геометрия. Читать полностью »

Прошло лет пять с того момента как нейронные сетки начали втыкать в каждую дырку. Есть масса примеров где всё работает почти идеально — биометрия, распознавание технической информации (номера, коды), классификация и поиск в массиве данных.

Есть области где всё хуже, но сейчас идёт большой прогресс — речь/распознавание текстов, переводы.

Машинное зрение и медицина - 1

Но есть области загадочные. Вроде как и прогресс есть. И статьи регулярно выходят. Только вот до практического применения как-то особо и не доходит.

Давайте разберём то, как нейронные сеточки и машинное зрение работает в медицине.
Читать полностью »

Недавно исследователи из GoogleAI показали свой поход к задаче трекинга руки и определения жестов в реальном времени. Я как раз занимался подобной задачей и потому решил разобраться с тем как они подошли к решению, какие технологии они использовали, и как добились хорошей точности при риал тайм работе на мобильном устройстве. Также запустил модель на android и протестировал в реальных условиях.

Нейронные сети для трекинга рук в режиме реального времени - 1

Читать полностью »

К удивлению исследователей, алгоритмы компьютерного зрения с глубоким обучением часто не справляются с классификацией изображений потому, что они в основном ориентируются на текстуры, а не на формы.

Там, где человек видит формы, ИИ видит текстуры - 1

Если вы посмотрите на фотографию кошки, с большой вероятностью вы сможете узнать это животное, вне зависимости от того, будет оно рыжим или полосатым – или даже если фотография будет чёрно-белой, запятнанной, потрёпанной или потускневшей. Вероятно, вы сможете заметить кошку, когда она свернулась клубочком за подушкой или прыгает на стол, представляя собой лишь размытую форму. Вы естественным образом научились распознавать кошек почти в любой ситуации. А вот системы машинного зрения, работающие на основе глубоких нейросетей, хотя иногда и способны обставлять людей в задачах распознавания кошек при фиксированных условиях, но могут оказаться сбитыми с толку при помощи изображений, которые хоть немного отличаются от им известных, или же содержат шум или слишком сильную зернистость.
Читать полностью »

Walmart представила магазин с автоматическим отслеживанием запасов - 1

Компания Walmart запустила концептуальный магазин Walmart Intelligent Retail Lab в Нью-Йорке для испытания инновационных идей в торговле. Одна из первых идей, которую тестируют в магазине — отслеживание товаров на полках с помощью камер и системы машинного зрения.

Первоначальная цель магазина заключается в том, чтобы ускорить процесс инвентаризации и доступности продуктов и чтобы команде из 100 человек было проще точно знать, где и когда необходимо пополнять запасы продуктов. Несмотря на то, что это концептуальный магазин, он имеет более 30 000 товаров для продажи и открыт для публики.Читать полностью »

Для тех, кому лень читать всё: предлагается опровержение семи популярных мифов, которые в области исследований машинного обучения часто считаются истинными, по состоянию на февраль 2019. Данная статья доступна на сайте ArXiv в виде pdf [на английском языке].

Миф 1: TensorFlow – это библиотека для работы с тензорами.
Миф 2: Базы данных изображений отражают реальные фотографии, встречающиеся в природе.
Миф 3: Исследователи МО не используют проверочные наборы для испытаний.
Миф 4: В обучении нейросети используются все входные данные.
Миф 5: Для обучения очень глубоких остаточных сетей требуется пакетная нормализация.
Миф 6: Сети с вниманием [attention] лучше свёрточных [convolution].
Миф 7: Карты значимости – надёжный способ интерпретации нейросетей.

А теперь — подробности.
Читать полностью »

Делаем рейтинг городов России по качеству дорог - 1

В очередной раз проезжая на машине по родному городу и объезжая очередную яму я подумал: а везде ли в нашей стране такие «хорошие» дороги и решил — надо объективно оценить ситуацию с качеством дорог в нашей стране.
Читать полностью »

В Office 365 и другие продукты MS добавят режим голосового ввода-вывода для дислексиков - 1

Вчера в блоге Microsoft Education Team была опубликована обширная запись, которая презентует голосового ассистента для пакета продуктов Office 365, а также ряд обновлений других продуктов. В первую очередь речь идет о добавлении функций Dictation for Office 365 Desktop Apps в веб-версии продуктов Office 365 для учащихся, а также выход продукта Office Lens на платформе Android, который ранее был доступен только пользователям iOS. И это не полный список всех «вкусностей» от Microsoft. Все эти активности проходят совместно с организацией Made Dyslexia, в рамках которых технологический гигант планирует создавать учебные материалы и пособия для учеников и студентов, страдающих дислексией.

Важность публикации MS Education Team еще и в том, что она явно показывает один из приоритетных, а главное потенциально конкурентных направлений деятельности компании — развитие систем голосового ввода и распознавания текстов на пользовательских устройствах для всех существующих экосистем, подробнее о которых под катом. Там мы кратко расскажем о новинках от Microsoft без маркетинговых восторгов и обсудим, что вообще происходит и почему когда-то «главная корпорация зла» внезапно оказалась на передовой в области обучения подрастающего поколения.
Читать полностью »

Машинное обучение продолжает проникать в индустрии за пределами интернет-отрасли. На конференции Data&Science «Мир глазами роботов» Александр Белугин из компании «Цифра» рассказал об успехах, сложностях и актуальных задачах на этом пути. Внедрение таких технологий, как компьютерное зрение, требует серийности и продуктового подхода, позволяющего снизить стоимость единичных внедрений. Дело в том, что видов задач на производстве очень много. Из доклада можно узнать о продуктах, мировых трендах и опыте команды Александра в сферах промышленной безопасности и автоматизации процессов.

— Доброе утро. Рад, что все пришли на эту интересную конференцию. Я сначала кратко расскажу про компанию «Цифра», затем — немного о задачах, которые стоят в промышленности, и о типовых способах решения таких задач. Это задачи без роботов, не сборочные, а разные процессные производства. В конце немного рассмотрим наш опыт.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js