Рубрика «машинное обучение» - 91

Хабр, привет.

Отфильтровав большое количество источников и подписок — собрал для вас все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за июнь. Всем приятного чтения!

1. Команда исследователей из Карнеги-Меллона сделала прорыв в области неинвазивного управления роботизированными устройствами.

Используя неинвазивный интерфейс мозг-компьютер, они разработали первую в мире успешную роботизированную руку, которая управляется с помощью мыслей и без хирургического (!) вмешательства. Технология продемонстрировала способность непрерывно отслеживать и следовать за курсором компьютера.

image

Читать подробнее

2. Facebook AI опубликовали работу, в которой проверяли нейросети на способность следовать принципу взаимной исключительности при принятии решений. И выяснили, чем отличается процесс принятия решений у нейросети и ребенка.

image

Читать подробнее

3. Waymo публикует данные для обучения автопилотных автомобилей. Данные включают в себя 3,000 видеозаписей вождения, которые в сумме длятся 16.7 часов, 600,000 фреймов, около 25 миллионов 3D границ объектов и 22 миллионов 2D границ объектов. Сенсоры на автомобилях, которые собирали данные, включали в себя 5 LiDARs, 5 камер и радары, количество которых не разглашается. Компания заявила, что им удалось точнее синхронизировать LiDAR и записи камер, чем в открытых данных (KITTI, NuScenes).

image

Читать подробнееЧитать полностью »

Инженер Amazon создал блокирующее устройство с ИИ, которое не пускает в дом кота с уличной добычей - 1

Инженер Amazon Бен Хэмм разработал умный блокиратор, который не дает его коту по кличке Метрик приносить внутрь дома пойманных охотничьими лапками и зубками и по факту уже мертвых птиц и крыс.
Читать полностью »

Штат Виргиния вводит уголовное наказание за распространение Deepfake-фотографий - 1

Начиная с первого июля в штате Виргиния вводятся изменения в закон о распространении видеоматериалов интимного содержания.
Читать полностью »

Data Science Digest (July 2019) - 1

Приветствую всех!

Лето в полном разгаре, и если вы планируете быть в Одессе 5-го июля, приглашаю вас на ODS митап и дата-бар, который организовывает одесская ODS.ai команда. Напоминаю, что у дайджеста есть свой Telegram-канал и страницы в соцсетях (Facebook, Twitter, LinkedIn, Medium), где я ежедневно публикую ссылки на полезные материалы. Присоединяйтесь!

А пока предлагаю свежую подборку материалов под катом.
Читать полностью »

Продолжаем рассказывать про конференцию по статистике и машинному обучению AISTATS 2019. В этом посте разберем статьи про глубокие модели из ансамблей деревьев, mix регуляризацию для сильно разреженных данных и эффективную по времени аппроксимацию кросс-валидации.

Deep (Learning+Random) Forest и разбор статей - 1

Читать полностью »

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.

Погружение в свёрточные нейронные сети. Часть 5 - 1 — 9 - 1
Выход новых лекций запланирован каждые 2-3 дня.

Читать полностью »

Меня зовут Саша и я люблю машинное обучение, а также обучение людей. Сейчас курирую образовательные программы в Computer Science центре и руковожу бакалавриатом по анализу данных в СПбГУ. До этого работал аналитиком в Яндексе, а ещё раньше — учёным: занимался математическим моделированием в ИВТ СО РАН.

В этом посте хочу рассказать, что получилось из идеи запуска тренировок по машинному обучению для студентов, выпускников Новосибирского государственного университета и всех желающих.

image
Читать полностью »

Между идеальным алгоритмом машинного обучения в вакууме и его применением на реальных данных часто лежит пропасть. Вроде бы берешь статью: алгоритм есть, сходимость для данных такого-то типа есть — бери и применяй. Но почему-то оказывается, что твоих данных недостаточно для обучения, да и отличаются они от модельных из статьи, потому что настоящие, не синтетические.

Обычное дело в обосновании алгоритма ввести допущения о чистоте данных и их распределении, которых в реальной жизни не найдёшь. Например, автор статьи экспериментирует на фотографиях взрослых знаменитостей, и все у него замечательно распознается и классифицируется, а в нашем реальном примере попадаются еще и дети, и мультяшные персонажи, и на них всё внезапно ломается. Но есть люди, которые умеют с этим справляться, да так, что пропасть между теорией и практикой перестает казаться неприступной, и, стоит показать как, сразу находятся и другие желающие ее преодолеть.

Используем данные на практике - 1
Читать полностью »

Недавно я читал статью о том, как научиться программировать под Android с нуля за полчаса. Она начиналась со слов «Вы можете даже не догадываться, но миллионы людей во всем мире зарабатывают деньги на разработке приложений под Android». Дальше в ней, конечно, не было ничего хорошего — установите Android Studio, вот вам XML, вот активити, здесь впечатайте текст на Java. Совершенно стандартная я-научу-вас-программировать-за-полчаса статья с рекламой платных курсов.

Правда в том, что никаких денег не хватит, если пытаться выучиться всему на свете на платных курсах. А другая правда в том, что в мире есть крупицы полезнейших знаний по разработке от хороших разработчиков — и бесплатно. Этот пост — одна из таких крупиц.

29 мая у нас прошёл митап Android Paranoid, и здесь три доклада с него. Коллеги подробно рассказали про ML Kit от Google, о разработке клиента для распределенной системы и про одно публичное API, которое Google не афиширует. Добро пожаловать под кат.

Читать полностью »

Представляю вашему вниманию перевод статьи «Создаем музыку: когда простые решения превосходят по эффективности глубокое обучение» о том, как искусственный интеллект применяется для создания музыки. Автор не использует нейронные сети для генерации музыки, а подходит к задаче, исходя из знания теории музыки, на основе мелодии и гармонии. Другой особенностью статьи является метод сравнения музыкальных произведений на основе матриц самоподобия. Такой подход, конечно, не является исчерпывающим, но он полезен как промежуточный шаг для генерации качественной музыки методами машинного обучения.

Создаем музыку: когда простые решения превосходят по эффективности глубокое обучение - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js