Рубрика «машинное обучение» - 90

Почему мы решили развивать практику тестирования ML - 1

Прогнозные и оптимизационные сервисы на базе Machine Learning вызывают сегодня интерес у многих компаний: от крупных банков до небольших интернет-магазинов. Решая задачи различных клиентов мы столкнулись с рядом проблем, что послужило для нас почвой для рассуждений на тему особенности тестирования ML. Для тех, кому это интересно, — наш очередной пост от тест-менеджера компании «Инфосистемы Джет» Агальцова Сергея.
Читать полностью »

Нейросеть по контурам квартиры делит ее на зоны, рисует стены и расставляет мебель - 1

Пользователь вводит данные: контуры планировки, входная группа и окна. Нейросеть создает планировку с помещениями, а также стены и проемы между ними.
Читать полностью »

Google DeepMind может обнаружить обострение заболевания почек раньше, чем врачи - 1
Источник: DeepMind

Разработчики Google DeepMind представили прорыв в сфере здравоохранения. Новая технология DeepMind способна предсказать обострения заболеваний почек за 48 часов до того, как симптомы могут распознать врачи.

Для контроля состояния почек программа использует результаты анализа крови. Она определяет содержание креатинина — вещества, которое способно вызвать острую почечную недостаточность. Результаты исследования отправляются в автоматическом режиме врачам и медсестрам в виде отчета.
Читать полностью »

How to deploy Python Telegram bot using Webhooks on Google Cloud Platform

Вместо предисловия

image

— Напиши телеграм-бота. Сейчас даже школьники пишут, — сказала она.
— А почему бы и нет, — подумал я тогда ( — Ну, ну, — сказал бы я сейчас).

Мы сидели в Бине и за чашкой кофе обсуждали возможности тестирования идей с моделями искусственного интеллекта на близком и не очень круге друзей. Лена, моя бывшая коллега, и во всех отношениях не блондинка, только что закончившая магистратуру, рассуждала так. Создав бота, можно сэкономить силы и время на интерфейсе, сосредоточившись на ядре с машинным обучением. Согласитесь, что устоять против такой логики “спортсменки, комсомолки и просто красавицы” в то прекрасное воскресное утро было невозможно. Решено. Телеграм-бот, значит телеграм-бот.

Первым делом я залез в гугл и нашел большое число ссылок “как сделать бот за 30 минут”. Это меня настолько воодушевило, что дальше названий я не пошел и занялся созданием ядра. В самом первом приближении мне предстояло написать систему обработки поисковых запросов с использованием NLP (natural language processing). Написание ядра заняло некоторое, вполне разумное, время (все же опыт кока-колой не пропить). И через несколько дней я был готов к тому, чтобы за пару часов обернуть первую тестовую версию ядра в пару другую команд send-receive, запустив все это в Телеграме на благо моим друзьям. Но не тут-то было.

Неожиданно возник целый клубок проблем. Потратив пару дней на поиски в интернете и общение с коллегами по цеху, я понял, что очевидное не очевидно, и еще одна “инструкция” точно не повредит. Так и появилась эта статья.

Читать полностью »

Привет, читатель! Отфильтровав для вас большое количество источников и подписок — собрал все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за июль. Не забудьте поделиться с коллегами, или просто с теми, кому интересны такие новости. В конце статьи вас ждут бонус и немного юмора.

Для тех, кто не читал дайджест за июнь, можете прочесть его здесь.

Итак, теперь собственно июльский дайджест.

1. ВКонтакте опубликовали библиотеку для предобработки текстовых данных. YouTokenToMe — это библиотека для предобработки текстовых данных. Инструмент работает в 7-10 раз быстрее аналогов для текстов на алфавитных языках и в 40-50 на иероглифических языках. Библиотека была разработана исследователями из ВКонтакте. → Подробнее

image
Читать полностью »

Представьте, что вы – инженер, и вас попросили разработать компьютер с нуля. Как-то раз вы сидите в офисе, изо всех сил проектируете логические контуры, распределяете вентили AND, OR, и так далее,- и вдруг входит ваш босс и сообщает вам плохие новости. Клиент только что решил добавить неожиданное требование к проекту: схема работы всего компьютера должна иметь не более двух слоёв:

Нейросети и глубокое обучение, глава 4: почему глубокие нейросети так сложно обучать? - 1

Вы поражены, и говорите боссу: «Да клиент спятил!»

Босс отвечает: «Я тоже так думаю. Но клиент должен получить то, что хочет».
Читать полностью »

Привет! Представляю вашему вниманию перевод статьи “The Limitations of Machine Learning“ автора Matthew Stewart.

Большинство людей, читающих эту статью, вероятно, знакомы с машинным обучением и соответствующими алгоритмами, используемыми для классификации или прогнозирования результатов на основе данных. Тем не менее, важно понимать, что машинное обучение не является решением всех проблем. Учитывая полезность машинного обучения, может быть трудно согласиться с тем, что иногда это не лучшее решение проблемы.

Ограничения машинного обучения - 1

Читать полностью »

Как выдумаете, сложно ли написать на Python собственного чатбота, способного поддержать беседу? Оказалось, очень легко, если найти хороший набор данных. Причём это можно сделать даже без нейросетей, хотя немного математической магии всё-таки понадобится.

Идти будем маленькими шагами: сначала вспомним, как загружать данные в Python, затем научимся считать слова, постепенно подключим линейную алгебру и теорвер, и под конец сделаем из получившегося болтательного алгоритма бота для Телеграм.

Этот туториал подойдёт тем, кто уже немножко трогал пальцем Python, но не особо знаком с машинным обучением. Я намеренно не пользовался никакими nlp-шными библиотеками, чтобы показать, что нечто работающее можно собрать и на голом sklearn.

Создание простого разговорного чатбота в python - 1

Читать полностью »

В школьные годы у меня был одноклассник, который мог послушать, как работает машина во дворе, и с серьезным лицом вынести вердикт: все в порядке, или что-то сломалось, и нужно срочно бежать за новыми деталями/маслом/инструментами! Я, как абсолютный чайник в автомобильном деле, всегда слышал обычное дребезжание очередной двенашки, никаких отличий не замечая и просто молча поражаясь его слуху и скилам.

Ищем поломку в авто по звуку: призываем немного машинного обучения для поиска аномалий в работе двигателя - 1

Сейчас разбираться во внутренностях автомобиля я лучше не стал, зато начал работать с обработкой звуковых сигналов и машинным обучением, и здесь мы с вами постараемся понять, а возможно ли научить компьютер улавливать в звуке работы двигателя отклонения от нормы?
Как минимум, это просто интересно проверить, а в перспективе такая технология могла бы сэкономить кучу денег автовладельцам. По крайней мере в моем представлении, под капотом критичные поломки происходят постепенно, и на ранних стадиях, многие из них можно услышать, быстро и дешево исправить, сэкономив время, деньги и без того шаткие нервы.

Ну что, пожалуй, пора перейти от слов к делу. Поехали!

Читать полностью »

Увидеть почти невидимое, еще и в цвете: методика визуализации объектов через рассеиватель - 1

Одной из самых знаменитых способностей Супермена является суперзрение, которое позволяло ему рассматривать атомы, видеть в темноте и на огромное расстояние, а еще видеть сквозь предметы. Эту способность крайне редко демонстрируют на экранах, но она есть. В нашей же реальности видеть сквозь практически полностью непрозрачные объекты также можно, применив некоторые научные трюки. Однако, полученные снимки всегда были черно-белые, до недавнего времени. Сегодня мы познакомимся с исследованием, в котором ученые из университета Дьюка (США) смогли сделать цветной снимок объектов, спрятанных за непрозрачной стеной, применив однократное световое воздействие. Что это за супер-технология, как она работает и в каких областях может применяться? Об этом нам расскажет доклад исследовательской группы. Поехали.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js