Рубрика «машинное обучение» - 9

14го декабря в одном из самых авторитетных общенаучных журналов Nature была опубликована статья с, кажется, сенсационным заголовком: «ИИ-модели Google DeepMind превосходят математиков в решении нерешённых проблем». А в блогпосте дочки гугла и вовсе не постеснялся указать, что это — первые находки Больших Языковых Моделей (LLM) в открытых математических проблемах. Неужели правда? Или кликбейт — и это в Nature? А может мы и вправду достигли Читать полностью »

Недавно на Habr вышел перевод статьи под названием: «Классическое программирование на грани вымирания»Читать полностью »

Создаём сортировщик деталей Lego Technic, распознающий объекты в реальном времени - 1


Когда я проходил стажировку в Nullspace Robotics, мне повезло участвовать в проекте, нацеленном на расширение возможностей компании. Мы совместили системы обнаружения объектов и распознавания изображений для создания модели, классифицирующей детали конструктора Lego Technic в реальном времени.

В этой статье я расскажу о том, с какими сложностями столкнулся наш проект, и как мы довели его до успешного завершения.Читать полностью »

Пример работы гауссова сплэтинга. Этот ролик — не видеосъёмка реального мира, а рендер в реальном времени на настольном компьютере

Всплеск внимания к технике сплэтинга связан с представленной в августе этого года статьей 3D Gaussian Splatting for Real-Time Radiance Field Rendering [Трёхмерный гауссов сплэтинг для рендера radiance field в реальном времени]. До этого, в июле, эта научная работа исследователей Университета Лазурного берега, Института информатики Общества Макса Планка и французского Национального института исследований в информатике и автоматике вошла в пятёрку лучших работ SIGGRAPH 2023.

В следующие два месяца новостные сайты, блоги и тематические форумы начали рекомендовать гауссов сплэтинг как будущее компьютерной графики. Новая техника позволит быстро отсканировать существующую сцену и после короткого обучения отрендерить её с высокой точностью, обещают восторженные голоса.

Сейчас исследователи бьются над поиском практического применения технологии и сканированием движения. В оригинальной работе речь идёт о воссоздании в первую очередь статичных сцен.
Читать полностью »

Компиляция моделей МО в С - 1


Статья посвящена знакомству с инструментом micrograd и компиляции генерируемых им нейронных сетей в язык С. При этом она не является руководством по машинному обучению, но вполне может позволить вам лучше понять МО через призму компиляторов. В ходе этого процесса мы также разберём цепное правило, напишем собственный небольшой компилятор и посмотрим, как micrograd масштабируется.

Недавно у меня состоялся приятный разговор с моим другом Крисом. Он познакомил меня с основами машинного обучения, когда я разбирал написанный Андреем Карпаты micrograd.

Для тех, кто не знает, micrograd – это небольшая реализация нейронной сети, написанная на чистом Python без библиотек, в которой вычислительными единицами выступают не векторы и матрицы, а скалярные величины.Читать полностью »

От распределённого бэкенда — к сильному ИИ. Чем сейчас занимается легендарный Джефф Дин? - 1

На Хабре иногда рассказывают про выдающихся программистов современности, таких как Линус Торвальдс, Фабрис Беллар и Джефф Дин. Про этих людей ходят легенды. Особенно выделяется последний, которого в шутку сравнивают с Чаком Норрисом.

Шутки про Джеффа Дина дают понимание, насколько легендарной стала эта личность среди разработчиков Google:

«Когда Джефф Дин разрабатывает программу, то сначала создаёт бинарник, а потом пишет исходный код как документацию».

«Джефф Дин однажды не прошёл тест Тьюринга, потому что правильно установил 203-е число Фибоначчи менее чем за секунду».

«Джефф Дин родился 31 декабря 1969 года в 23:48. Ему потребовалось 12 минут, чтобы запустить свой первый счётчик времени».

Читать полностью »

Запускаем Stable Diffusion на Raspberry PI Zero 2 (или на 260 МБ ОЗУ) - 1


Задача — запустить Stable Diffusion, включающую большую трансформирующую модель c почти 1 миллиардом параметров, на Raspberry Pi Zero 2 с 512 МБ RAM, не добавляя дополнительного пространства подкачки и не выгружая промежуточные результаты на диск. Рекомендуемый минимальный объём RAM/VRAM для Stable Diffusion составляет 8 ГБ.Читать полностью »

Как маленькая нейроязыковая модель в Клавиатуре победила серверные подсказки - 1

Основная задача любой мобильной клавиатуры — помогать пользователям в общении, а именно — вводить текст быстро и без ошибок. Этого можно достичь при помощи разных компонентов: подсказок, автокорректа, тап-модели, голосового ввода, ввода Читать полностью »

GPT-4 со временем становится хуже - 1

Мы думаем, что развитие ИИ идет только в одном направлении. Что они становятся умнее, поглощая больше данных, и всё точнее отвечают на вопросы. Но что если это не так?

Новое исследование из Стэнфорда показало, что за несколько последних месяцев GPT-4 стал ощутимо глупее. Например, ранее он правильно отвечал на простую математическую задачу в 98% случаев, а сейчас — всего лишь в 2% случаев. Рекордный регресс!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js