Рубрика «машинное обучение» - 89

Всем привет.

Поработав в 12 стартапах в сфере машинного обучения, я сделал восемь полезных выводов о продуктах, данных и людях.

Все стартапы были из разных сфер (финтех, биотехнологии, здравоохранение, технологии обучения) и на разных этапах: и на этапе pre-seed, и на этапе приобретения крупной компанией. Менялась и моя роль. Я был стратегическим консультантом, главой отдела анализа данных, заваленный делами штатным сотрудником. Все эти компании старались создать хороший продукт, и многим это удалось.

За время работы я пришел к таким выводам:

Продукт важнее ИИ

Эти стартапы разрабатывают продукты, а не изучают искусственный интеллект. Меня, как убежденного математика, сначала больше интересовало машинное обучение и создание новых методов и алгоритмов.

Вскоре я понял, что даже точные модели машинного обучения не ценны сами по себе. Ценность ИИ и машинного обучения напрямую зависит от ценности продукта, в котором они используются. Цель стартапа – научиться создавать продукты, основанные на машинном обучении.

При таком подходе иногда выясняется, что машинное обучение – не самый эффективный инструмент. Иногда дело не в поставленной задаче, а в процессе решения. Даже в таких ситуациях полезно обратиться к ученым: они используют научный, основанный на данных подход. Тем не менее, не тратьте время на ИИ там, где нужно исправить процесс. Читать полностью »

AI-Based Photo Restoration - 1

Hi everybody! I’m a research engineer at the Mail.ru Group computer vision team. In this article, I’m going to tell a story of how we’ve created AI-based restoration project for old military photos. What is «photo restoration»? It consists of three steps:

  • we find all the image defects: fractures, scuffs, holes;
  • we inpaint the discovered defects, based on the pixel values around them;
  • we colorize the image.

Further, I’ll describe every step of photo restoration and tell you how we got our data, what nets we trained, what we accomplished, and what mistakes we made.
Читать полностью »

GitHub удаляет открытые версии DeepNude - 1

Сервис GitHub начал удалять страницы, содержащие код программы DeepNude — приложения на основе искусственного интеллекта, которое «раздевает» женщин на фотографиях.

Фрагменты кода были сгенерированы из копии приложения DeepNude, которое вышло в продажу в прошлом месяце. Материал был помещен в удаленный на текущий момент репозиторий GitHub. Как пишет издание The Verge со ссылкой на Motherboard, представители GitHub пояснили, что приложение нарушает правила в отношении «сексуально непристойного контента». С GitHub были удалены несколько репозиториев, включая тот, что был официально создан разработчиком DeepNude.
Читать полностью »

Дифференцируемое программирование - 1

С четырьмя параметрами я могу задать слона, а с пятью я могу заставить его шевелить хоботом.
– John Von Neumann

Идея «дифференцируемого программирования» очень популярна в мире машинного обучения. Для многих не ясно, отражает ли этот термин реальный сдвиг в том, как исследователи понимают машинное обучение, или это просто (еще один) ребрендинг «глубокого обучения». В этом посте разъясняется, что нового дает дифференцируемое программирование (или ∂P) в таблице машинного обучения.

Самое главное, дифференцируемое программирование — это сдвиг, противоположный направлению глубокого обучения; от все более сильно параметризованных моделей к более простым, которые в большей степени используют структуру проблемы.

Далее мы пролистаем полотно неинтересного текста, захотим узнать, что такое автодифференцирование и даже популяем из катапульты!

Читать полностью »

Продолжаем постигать современную магию (компьютерное зрение). Часть 2 не значит, что нужно сначала читать часть 1. Часть 2 значит, что теперь всё серьёзно — мы хотим понять всю мощь нейросетей в зрении. Детектирование, трекинг, сегментация, оценка позы, распознавание действий… Самые модные и крутые архитектуры, сотни слоёв и десятки гениальных идей уже ждут вас под катом!

Вижу, значит существую: обзор Deep Learning в Computer Vision (часть 2) - 1
Читать полностью »

Агро-робот с ИИ научился аккуратно собирать с грядки только созревший салат - 1
Многие виды растений и сельхозкультур до сих пор собираются только вручную.

Инженеры из Кембриджского университета (Великобритания) создали рабочий прототип роботизированного сборщика урожая, способного самостоятельно распознавать готовые к срезанию неповрежденные кочаны салата, а также аккуратно их обрабатывать и собирать.
Читать полностью »

Всем привет. В этой статье я расскажу о нашем опыте участия в соревновании по анализу данных Data Mining Cup 2019 (DMC) и о том, как нам удалось войти в ТОП-10 команд и принять участие в очном финале чемпионата в Берлине.

image
Читать полностью »

image

Вступление

За годы разработки ML- и DL-проектов у нашей студии накопились и большая кодовая база, и много опыта, и интересные инсайты и выводы. При старте нового проекта эти полезные знания помогают увереннее начать исследование, переиспользовать полезные методы и получить первые результаты быстрее.

Очень важно, чтобы все эти материалы были не только в головах разработчиков, но и в читаемом виде на диске. Это позволит эффективнее обучить новых сотрудников, ввести их в курс дела и погрузить в проект.

Конечно, так было не всегда. Мы столкнулись с множеством проблем на первых этапах

  • Каждый проект был организован по-разному, особенно если их инициировали разные люди.
  • Недостаточно отслеживали, что делает код, как его запустить и кто его автор.
  • Не использовали виртуализацию в должной степени, зачастую мешая своим коллегам установкой существующих библиотек другой версии.
  • Забывались выводы, сделанные по графикам, которые осели и умерли в горé jupyter-тетрадок.
  • Теряли отчеты по результатам и прогрессу в проекте.

Для того, чтобы эти проблемы решить раз и навсегда, мы решили, что нужно работать как над единой и правильной организаций проекта, так и над виртуализацией, абстракцией отдельных компонентов и переиспользуемостью полезного кода. Постепенно весь наш прогресс в этой области перерос в самостоятельный фреймворк — Ocean.

Вишенка на торте — логи проекта, которые агрегируются и превращаются в красивый сайт, автоматически собранный с помощью выполнения одной команды.

В статье мы расскажем на маленьком искусственном примере, из каких частей состоит Ocean и как его использовать.

Читать полностью »

Сотрудники Сеульского университета опубликовали исследование о симуляции движения двуногих персонажей на основе работы суставов и мышечных сокращений, использующей нейросеть с Deep Reinforcement Learning. Под катом перевод краткого обзора.

Бег с протезами: некстген симуляция движения человека с помощью мышц, костей и нейросети - 1
Читать полностью »

Машинное обучение vs. аналитический подход - 1

Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js