Рубрика «машинное обучение» - 86

Как выдумаете, сложно ли написать на Python собственного чатбота, способного поддержать беседу? Оказалось, очень легко, если найти хороший набор данных. Причём это можно сделать даже без нейросетей, хотя немного математической магии всё-таки понадобится.

Идти будем маленькими шагами: сначала вспомним, как загружать данные в Python, затем научимся считать слова, постепенно подключим линейную алгебру и теорвер, и под конец сделаем из получившегося болтательного алгоритма бота для Телеграм.

Этот туториал подойдёт тем, кто уже немножко трогал пальцем Python, но не особо знаком с машинным обучением. Я намеренно не пользовался никакими nlp-шными библиотеками, чтобы показать, что нечто работающее можно собрать и на голом sklearn.

Создание простого разговорного чатбота в python - 1

Читать полностью »

В школьные годы у меня был одноклассник, который мог послушать, как работает машина во дворе, и с серьезным лицом вынести вердикт: все в порядке, или что-то сломалось, и нужно срочно бежать за новыми деталями/маслом/инструментами! Я, как абсолютный чайник в автомобильном деле, всегда слышал обычное дребезжание очередной двенашки, никаких отличий не замечая и просто молча поражаясь его слуху и скилам.

Ищем поломку в авто по звуку: призываем немного машинного обучения для поиска аномалий в работе двигателя - 1

Сейчас разбираться во внутренностях автомобиля я лучше не стал, зато начал работать с обработкой звуковых сигналов и машинным обучением, и здесь мы с вами постараемся понять, а возможно ли научить компьютер улавливать в звуке работы двигателя отклонения от нормы?
Как минимум, это просто интересно проверить, а в перспективе такая технология могла бы сэкономить кучу денег автовладельцам. По крайней мере в моем представлении, под капотом критичные поломки происходят постепенно, и на ранних стадиях, многие из них можно услышать, быстро и дешево исправить, сэкономив время, деньги и без того шаткие нервы.

Ну что, пожалуй, пора перейти от слов к делу. Поехали!

Читать полностью »

Увидеть почти невидимое, еще и в цвете: методика визуализации объектов через рассеиватель - 1

Одной из самых знаменитых способностей Супермена является суперзрение, которое позволяло ему рассматривать атомы, видеть в темноте и на огромное расстояние, а еще видеть сквозь предметы. Эту способность крайне редко демонстрируют на экранах, но она есть. В нашей же реальности видеть сквозь практически полностью непрозрачные объекты также можно, применив некоторые научные трюки. Однако, полученные снимки всегда были черно-белые, до недавнего времени. Сегодня мы познакомимся с исследованием, в котором ученые из университета Дьюка (США) смогли сделать цветной снимок объектов, спрятанных за непрозрачной стеной, применив однократное световое воздействие. Что это за супер-технология, как она работает и в каких областях может применяться? Об этом нам расскажет доклад исследовательской группы. Поехали.Читать полностью »

Российский школьник выиграл грант от Google за изобретение устройства, которое помогает глухим озвучивать свои мысли - 1

Даниил Казанцев из Екатеринбурга выиграл грант от Google на обучение в размере 15 тысяч долларов. Он придумал устройство, которое помогает глухим и слабослышащим людям выражать свои мысли.
Читать полностью »

Результаты нового исследования искусственного интеллекта указывают на то, что зрительная система спонтанно создает чувство числа без предварительного опыта подсчета.

«Чувство числа» возникает из распознавания визуальных объектов - 1
У людей и животных есть «чувство числа», врожденная способность подсчитывать количество объектов в сцене. Считается, что нейронной основой этой способности являются так называемые нейроны числа, которые реагируют на определенные числа и были обнаружены в мозге человека и животных. Исследователи долго задавались вопросом, формируются ли эти нейроны числа в мозге только благодаря способности видеть — и если да, то как? Теперь группа исследователей во главе с профессором Андреасом Нидером из Института нейробиологии Университета Тюбингена изучила происхождение чувства числа, используя искусственную нейронную сеть. Результаты показывают, что чувство числа возникает спонтанно в визуальной системе без какого-либо опыта в подсчете. Исследование было опубликовано в издании Science Advances.
Читать полностью »

Визуализация новостей рунета - 1

Представьте себе, что вы поспорили с друганом, что было раньше — курица или яйцо повышение какого-то налога, к примеру, или новости на эту тему, или вовсе важное событие заглушили тучей новостей про новую песню, скажем, Киркорова. Удобно было бы посчитать, сколько новостей на каждую тему было в каждый конкретный момент времени, а потом наглядно это представить. Собственно, этим и занимается проект “радар новостей рунета”. Под катом мы расскажем, при чём здесь машинное обучение и как любой доброволец может в этом поучаствовать.

Читать полностью »

Привет! Меня зовут Николай, и я занимаюсь построением и внедрением моделей машинного обучения в Сбербанке. Сегодня расскажу о разработке рекомендательной системы для платежей и переводов в приложении на ваших смартфонах.

Как мы внедрили ML в приложение с почти 50 миллионами пользователей. Опыт Сбера - 1
Дизайн главного экрана мобильного приложения с рекомендациями

У нас было 2 сотни тысяч возможных вариантов платежей, 55 миллионов клиентов, 5 различных банковских источников, полсолонки разработчиков и гора банковской активности, алгоритмов и всего такого, всех цветов, а ещё литр рандомных сидов, ящик гиперпараметров, пол-литра поправочных коэффициентов и две дюжины библиотек. Не то чтобы это всё было нужно в работе, но раз начал улучшать жизнь клиентов, то иди в своём увлечении до конца. Под катом история о сражении за UX, о правильной постановке задачи, о борьбе с размерностью данных, о вкладе в open-source и наших результатах.

Читать полностью »

image

Всем привет! Мы — студия разработки Banzai Games. Рады наконец открыть здесь свой блог. Будем писать о наших технологиях, проектах и делиться историями из жизни компании. Первый материал — перевод интервью с основателем студии Евгением Дябиным, которое он дал коллегам из издания 80lv. В нем он рассказал о нашей программе для создания physics-based анимации Cascadeur и ее преимуществах перед mocap-анимацией.
Читать полностью »

Разработчики центра Samsung в Сколково научили нейросеть рендерить видео из любой точки - 1

Три исследователя Samsung AI Center в Сколково разработали нейросеть, способную воспроизводить фотореалистичные сцены из видео с нового угла зрения.
Система использует набор точек, которые представляют собой геометрический аналог сцены из видео. Сеть обрабатывает облако точек так, чтобы в итоге получилось изображение с другой точки обзора. Такой подход можно использовать для моделирования изображений из видео без построения сетки.

Как сообщил Дмитрий Ульянов, один из авторов разработки, в комментарии The Next Web, «идея состоит в том, чтобы научиться визуализировать сцену с любой точки зрения».
Читать полностью »

Этим постом я открываю серию, где мы с коллегами расскажем, как используется ML у нас в Поиске Mail.ru. Сегодня я объясню, как устроено ранжирование и как мы используем информацию о взаимодействии пользователей с нашей поисковой системой, чтобы сделать поисковик лучше.

Задача ранжирования

Что подразумевается под задачей ранжирования? Представим, что в обучающей выборке есть какое-то множество запросов, для которых известен порядок документов по релевантности. Например, вы знаете, какой документ самый релевантный, какой второй по релевантности и т.д. И вам нужно восстановить такой порядок для всей генеральной совокупности. То есть для всех запросов из генеральной совокупности на первое место поставить самый релевантный документ, а на последнее — самый нерелевантный.

Давайте посмотрим, как такие задачи решаются в больших поисковых системах.

Активное обучение ранжированию - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js