Рубрика «машинное обучение» - 81

Представляем исчерпывающую шпаргалку, где мы простыми словами рассказываем, из чего «делают» искусственный интеллект и как это все работает.

В чем разница между Artificial Intelligence, Machine Learning и Data Science?

AI для людей: простыми словами о технологиях - 1
Разграничение понятий в области искусственного интеллекта и анализа данных.
Читать полностью »

Говорим о новых архитектурах как крупных мировых производителей, так и стартапов — waferscale-чипах, тензорных процессорах и устройствах на базе графов.

Подборка по теме:


Чипы для ML — рассказываем о новинках - 1Читать полностью »

Нейросеть строит пейзажное видео по одной фотографии - 1

Учёные из Университета Цукубы и Технологического Университета Тойохаси представили новую статью на SIGGRAPH Asia 2019. Она называется «Анимационный пейзаж: изучение самостоятельного движения и внешнего вида объектов для синтеза видеоизображений из одного изображения». Их метод с помощью свёрточных нейронных сетей (CNN) может создавать анимацию с высоким разрешением из одного ландшафтного изображения.

«Из пейзажного изображения люди могут представить, как движутся облака и меняется цвет неба с течением времени. Воспроизведение таких переходов — довольно распространённое явление. Например, люди используют синемаграммы и другие методы».

К сожалению, отмечают учёные, при использовании подобных методов разрешение и качество полученного видео часто оказывается намного ниже ожидаемых. Одной из причин неудовлетворительных результатов является то, что пространственно-временная область видео слишком велика по сравнению с изображениями. Другая причина — неопределенность в будущем, в прогнозировании кадров.
Читать полностью »

На днях мы вновь начали принимать заявки на получение премии имени Ильи Сегаловича iseg. Как и в прошлый раз, участвовать могут студенты, аспиранты и научные руководители из России, Беларуси и Казахстана. Мы вручаем премию за достижения в тех областях, в которых работаем сами: ML, CV, информационный поиск и анализ данных, обработка естественного языка и машинный перевод, а также речевые технологии.

Читать полностью »

OpenAI научила нейросеть собирать кубик Рубика одной роборукой - 1
Источник: OpenAI

OpenAI обучила нейронную сеть собирать кубик Рубика с помощью смоделированной руки-робота, похожей на человеческую. Нейронную сеть обучили при помощи новой техники, которая называется рандомизацией доменов (ADR). Эта техника позволяет системе обрабатывать ситуации, с которыми она никогда не сталкивалась во время тренировок.

«Это не просто инструмент для виртуальных задач, он может решать проблемы реального мира, требующие беспрецедентной ловкости», — утверждают в OpenAI.
Читать полностью »

Привет!

Недавно пообщался с коллегами о вариационном автоэнкодере и выяснилось что многие даже работающие в Deep Learning знают о вариационном выводе (Variational Inference) и в частности Нижней вариационной границе только по наслышке и не до конца понимают что это такое.
В этой статье я хочу подробно разобрать эти вопросы. Кому интересено, прошу под кат — будет очень интересно.
Читать полностью »

Мы не можем доверять ИИ-системам, построенным на одном лишь глубоком обучении - 1

Этот текст — не результат научного исследования, а одно из многих мнений относительно нашего ближайшего технологического развития. И заодно приглашение к дискуссии.

Гари Маркус, профессор Нью-Йоркского университета, уверен, что глубокое обучение играет важную роль в развитии ИИ. Но он также считает, что избыточное увлечение этой методикой может привести к её дискредитации.

В своей книге Rebooting AI: Building artificial intelligence we can trust Маркус, по образованию невролог, который построил карьеру на передовых исследованиях в сфере ИИ, обращается к техническим и этическим аспектам. С точки зрения технологий, глубокое обучение может успешно подражать решению задач на восприятие, которые выполняет наш мозг: например, распознавание изображений или речи. Но для решения иных задач, вроде понимания разговоров или определения причинно-следственных связей, глубокое обучение не годится. Чтобы создать более продвинутые интеллектуальные машины, способные решать более широкий круг задач — их часто называют общим искусственным интеллектом — глубокое обучение необходимо комбинировать с другими методиками.
Читать полностью »

Одной из интересных и популярных (особенно перед разными юбилеями) задач является «раскрашивание» старых черно-белых фотографий и даже фильмов. Тема это достаточно интересная, как с математической, так и с исторической точки зрения. Мы рассмотрим реализацию этого процесса на Python, который любой желающий сможет запустить на своем домашнем ПК.

Результат работы на фото.

Раскрашиваем ч-б фото с помощью Python - 1

Для тех кому интересно, принцип работы, исходники и примеры под катом.
Читать полностью »

Тема нейросетей будоражит сердца разработчиков, учёных и маркетологов уже не первый год, а кого-то даже не первое десятилетие. Но все мы знаем, что частенько под проектами на основе нейронок прячется простая биг дата и маркетинговый булшит, раздутый на фоне кликбейтного заголовка. Мы постарались избежать такой истории и разработали проект нейропиццы, основанный на исследовании молекулярной сочетаемости ингредиентов, анализе 300 тыс. рецептов и чистого творчества. Под катом вы можете узнать детали и найти ссылку с открытым кодом на GitHub.

AI-пицца: как мы использовали две рекуррентные нейросети - 1

Может ли машина придумать что-то новое или она ограничена тем, что знает? Пока что никто не знает ответа на этот вопрос. Но уже сейчас искусственный интеллект отлично решает задачи анализа больших нестандартных данных.

Однажды в Dodo Pizza решили провести эксперимент: систематизировать и структурно описать то, что во всём мире считается хаотичным и субъективным – вкус. Искусственный интеллект, помог найти самые сумасшедшие сочетания ингредиентов, которые, несмотря на свою необычность, оказались вкусными для большинства людей.

Я и мой коллега выступили в качестве специалистов по нейросетям от МФТИ и Сколтеха в этом необычном проекте. Мы разработали и обучили нейросеть, способную решать задачу генерации кухонных рецептов. В ходе работы было проанализировано более 300 000 рецептов, а также результаты научных исследований на тему молекулярной сочетаемости ингредиентов. На основе этого ИИ научился находить неочевидные связи между ингредиентами и понимать, как они сочетаются между собой и как наличие каждого из них влияет на сочетаемость всех остальных.
Читать полностью »

Всем привет! В этом посте я хочу рассказать вам о моей летней стажировке в ABBYY. Постараюсь осветить все моменты, которые обычно интересны студентам и начинающим разработчикам при выборе компании. Надеюсь, что кому-то данный пост поможет определиться с планами на следующее лето. В общем, поехали!

image

Для начала расскажу немного о себе. Меня зовут Женя, на момент подачи заявки на стажировку я заканчивал 3 курс МФТИ, Факультет инноваций и высоких технологий (сейчас может быть известен как Физтех-школа прикладной математики и информатики). Мне хотелось выбрать компанию, в которой можно получить опыт работы в области компьютерного зрения: картинки, нейронные сети и вот это вот все. Собственно, с выбором я не прогадал – ABBYY действительно для этого отлично подходит, но об этом позже.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js