Рубрика «машинное обучение» - 79

Искусственный интеллект Google играет в Starcraft II лучше 99,8% игроков-людей - 1

Искусственный интеллект AlphaStar, который разработала команда Google DeepMind, вошёл в «Элитную лигу» игроков StarCraft II — то есть попал в список 200 лучших игроков мира. Об этом сообщает научное издание Nature.

AlphaStar способен играть за три расы, представленные в Starcraft II: зергов, протоссов и терранов. Как утверждает Nature, AlphaStar не имел никакого особенного преимущества перед обычными игроками, его соперники не знали, что играют против машины. Попадание AlphaStar в «Элитную лигу» означает, что ИИ играет лучше, чем 99,8% игроков-людей.
Читать полностью »

Привет! Меня зовут Никита Учителев. Я представляю отдел Research & Development компании Lamoda. Нас 20+ человек, и мы работаем над различными рекомендациями на сайте и в приложениях, разрабатываем поиск, определяем сортировку товаров в каталогах, обеспечиваем возможность АБ-тестирования разнообразного функционала, а также поддерживаем несколько внутренних разработок вроде системы прогнозирования эластичности спроса и оптимизации логистики доставки.

image

Одним из основных направлений развития всей компании на ближайшие годы выбрана персонализация наших продуктов и услуг. Подобные инициативы тестируются и внедряются повсеместно — начиная от составления персональных подборок товаров до выбора конкретного торгового представителя, который доставит наш товар именно вам. В рамках процесса персонализации продуктов R&D я выступаю в роли тимлида и хочу в этой статье рассказать про платформу, проектированием и разработкой которой я со своей командой занимался последний год, а также про первые персонализированные продукты R&D, которые проходят АБ-тестирование в настоящее время.

Читать полностью »

В продолжение некогда поднятой в нашем блоге темы игрового искусственного интеллекта поговорим о том, насколько применимо к нему машинное обучение и в каком виде. Своим опытом и выбранными на его основе решениями поделился эксперт по вопросам ИИ в Apex Game Tools Якоб Расмуссен.

Как устроен гибридный игровой ИИ и в чём его преимущества - 1

В последние годы ведётся много разговоров о том, что машинное обучение кардинально изменит игровую индустрию, ведь эта технология уже стала прорывной во многих других цифровых приложениях. Но не стоит забывать, что игры устроены намного сложнее, чем симулятор вождения автомобиля, программа управления дроном или алгоритмы распознавания лиц на изображении. Читать полностью »

Беспилотный автомобиль научили определять скрытые от штатных датчиков объекты по движению их теней и изменению освещения - 1

Инженеры из Массачусетского технологического института (МТИ) и Исследовательского института Toyota разработали новое техническое решение для обучения автомобильных беспилотных систем, которое дополняет существующие системы анализа препятствий в прямой видимости их сенсоров. Теперь бортовой компьютер беспилотного автомобиля может автономно анализировать ситуацию, когда вне поля зрения его сенсоров (лидаров, радаров и камер), например, за углом на подземной парковке или за стеной дома, находится движущийся объект. Тогда беспилотный автомобиль может оценить вероятность пересечения их траекторий и избежать аварии, причем в этом случае ему помогут только косвенные признаки препятствия на дороге — появление на дороге новой тени, изменение ее размера.
Читать полностью »

В данной статье я бы хотел поделиться опытом построения системы планирования продаж и рассказать о практических шагах по ее внедрению.

Проблема разрозненного планирования

Зачастую в компаниях складывается следующая ситуация: У каждого подразделения возникает своя, уникальная версия плана продаж. Такие планы используют в работе, например, отделы маркетинга, продаж, финансисты и логистика.

Эти планы имеют разные формат, разную степень детализации, и, что самое важное, разные и противоречащие друг другу цифры.

Возникает закономерный вопрос, как выстроить в компании систему интегрированного планирования и что для этого нужно.

Выстраивание бизнес-процесса

Думаю важно подходить к вопросу с позиции создания отлаженной бизнес-технологии.

Как правило, планирование является регулярным процессом (часто ежемесячным или еженедельным), при котором происходит согласование и корректировка плана продаж и взаимосвязанных планов (например, поставок и производства).

(Часто используют термины: S&OP — Sales and Operations Planning, IBP — Integrated Business Planning).

В процессе планирования должны быть четко определены участники и их роли, конкретные задачи и сроки. Например, продавцы предоставляют планы клиентов (или каналов). Маркетинг проверяет ассортимент и сообщает о новинках и т.д.
Читать полностью »

Проблема автоматического поиска текста на изображениях существует достаточно давно, как минимум с начала девяностых годов прошлого века. Они могли запомниться старожилам повсеместным распространением ABBYY FineReader, умеющим переводить сканы документов в их редактируемые варианты.

Сканеры, подключённые к персональным компьютерам, отлично работают в компаниях, но прогресс не стоит на месте, и мир захватили мобильные устройства. Круг задач работы с текстом тоже поменялся. Теперь текст нужно искать не на идеально прямых листах А4 с чёрным текстом на белом фоне, а на различных визитках, красочных меню, вывесках магазинов и много ещё на чём, что человек может встретить в джунглях современного города.

Находим текст на вывесках и упаковках с помощью смартфона - 1
Реальный пример работы нашей нейросети. Картинка кликабельна.

Основные требования и ограничения

При таком разнообразии условий представления текста рукописные алгоритмы уже не справляются. Здесь на помощь нам приходят нейронные сети с их способностью обобщения. В этом посте мы расскажем о нашем подходе к созданию архитектуры нейросети, которая с хорошим качеством и высокой скоростью детектирует текст на сложных изображениях.
Читать полностью »

Высококачественная, легковесная и адаптируемая технология Text-to-Speech с использованием LPCNet - 1


Последние достижения в области глубокого обучения привносят существенные улучшения в развитие систем синтеза речи (далее – TTS). Это происходит благодаря применению более эффективных и быстрых методов изучения голоса и стиля говорящих, а также благодаря синтезу более естественной и качественной речи.Читать полностью »

Привет! Меня зовут Евгений Кашин, и я работаю в лаборатории машинного интеллекта Яндекса. Недавно мы запустили игру, в которой пользователи соревнуются с Алисой в угадывании стран по фотографиям.

Как действуют люди — понятно: они узнают места, которые видели в путешествиях или в кино, полагаются на эрудицию и здравый смысл. У нейросети ничего этого нет. Нам стало интересно, какие детали на снимках подсказывают ей ответ. Мы провели исследование, результатами которого сегодня поделимся с Хабром.

Этот пост будет интересен как специалистам в области компьютерного зрения, так и всем, кто хотел бы заглянуть внутрь «искусственного интеллекта» и понять логику его работы.

Как Алиса узнаёт страны по фотографиям. Исследование Яндекса - 1
Читать полностью »

image
Источник: Wikimedia

Нейросеть KataGo решила задачу, которая считается самой сложной в японской игре Го. Решение опубликовала пользовательница под ником Cassandra на форуме 19х19. KataGo изменила 140-й ход 177-ходового решения, созданного немецкими исследователями, и пришла к неожиданному итогу: победа белых с перевесом в два очка вместо победы черных с перевесом в пять камней.

Читать полностью »

image

Ученые опробовали методику глубокого обучения нейросетей для предсказывания исхода гравитационного взаимодействия трех тел. Выяснилось, что она позволяет решить задачу до 100 млн раз быстрее. Пока метод опробовали в ограниченном пространстве начальных параметров, но в дальнейшем его намерены применить для общего случая.

Нейросеть смогла за время около 1 миллисекунды предсказывать положения тел. Современный численный алгоритмом Brutus тратил на это, как правило, в 10 тысяч раз больше времени, а иногда отставал в 10 миллионов раз. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js