Рубрика «машинное обучение» - 76

Суперкомпьтер помогает разрабатывать алгоритмы для проектирования нейросетей, которые будут обнаруживать рак - 1

Суперкомпьютер Summit Ок-Риджской национальной лаборатории (ORNL), самый быстрый в мире, используется для разработки алгоритмов, которые могут помочь исследователям автоматически проектировать нейронные сети для исследований рака. Это позволит врачам быстрее распознавать характер опухолей.

По оценкам Всемирной организации здравоохранения, к 2025 году число диагностированных новых случаев рака достигнет 21,5 млн в год (сегодня — 18 млн). Сотрудники Ок-Риджской национальной лаборатории и Университета штата Нью-Йорк в Стони Брук считают, что это означает, что врачам придется исследовать около 200 миллионов анализов в год.

Нейронные сети могут помочь облегчить их нагрузки, чтобы врачи могли больше сосредоточиться на уходе за пациентами. Было проведено несколько исследований, описывающих, как можно обучить модели компьютерного зрения диагностировать раковые клетки на снимках. Тем не менее, как пишет The Register, их создание и обучение требует много времени и денег.
Читать полностью »

Tesla купила стартап DeepScale и восстанавливает поредевшую за лето команду разработчиков автопилота - 1
Пример работы системы обнаружения объектов DeepScale.

По данным издания CNBC, Tesla приобрела стартап DeepScale — разработчика систем машинного зрения на базе процессоров с низким энергопотреблением. Причем Форрест Иандола (Forrest Iandola), генеральный директор DeepScale, перешел на работу в Tesla на должность ведущего специалиста по машинному обучению. В компании таким образом заполняют кадровый пробел, образовавшийся из-за ухода группы инженеров и руководителя отдела по системам автопилотирования.
Читать полностью »

Нет времени объяснять, вот главные постулаты сегодняшнего перевода:

  • чат-боты не имеют предельных издержек и продают в 4 раза больше, чем люди;
  • вероятность продажи падает на 79%, если люди понимают, что говорят с роботом;
  • потребители воспринимают роботов как менее компетентных и эмпатичных.

Под катом – подробности исследования и инсайты от ученых. Приятного чтения!

Исследование: если покупатель понимает, что говорит с чат-ботом, то покупка не состоится вовсе - 1

Читать полностью »

image

Вчера 30 сентября Google объявил о выходе финального релиза TensorFlow 2.0.

«TensorFlow 2.0 является ПО с открытым исходным кодом и поддерживается сообществом, которое говорит, что им нужна простая в использовании платформа, гибкая и мощная, которая поддерживает развертывание на любой платформе. TensorFlow 2.0 предоставляет обширную экосистему инструментов для разработчиков, предприятий и исследователей, которые хотят использовать новейшие технологии машинного обучения и создавать масштабируемые приложения на базе ML.» — говорится в блоге Tensorflow на платформе Medium.

Читать полностью »

Хотим в общих чертах рассказать про первые достижения с deep learning в анимации персонажей для нашей программы Cascadeur.

Во время работы над Shadow Fight 3 у нас накопилось много боевой анимации — около 1100 движений средней длительностью около 4 секунд. Нам давно казалось, что это может быть хорошим датасетом для обучения какой-нибудь нейронной сети.

Однажды мы заметили, что когда аниматоры делают первые наброски идей на бумаге, то им достаточно нарисовать буквально палочного человечка, чтобы представить себе позу персонажа. Мы подумали, что раз опытный аниматор может хорошо выставить позу по простому рисунку, то вполне возможно, что и нейронная сеть справится. Из этого наблюдения родилась простая идея: давайте из каждой позы мы возьмем только 6 ключевых точек — запястья, щиколотки, таз и основание шеи. Если нейронная сеть знает только позиции этих точек, то сможет ли она предсказать остальную позу — позиции 37 остальных точек персонажа?
Читать полностью »

Не любите Java? Да вы не умеете ее готовить! Mani Sarkar предлагает нам познакомиться с инструментом Valohai, позволяющим проводить исследования модели на Java.

Deep Learning теперь на Java - 1
Читать полностью »

Недавно на arXiv.org была загружена статья с не очень интригующим названием "Neural reparameterization improves structural optimization" [arXiv:1909.04240]. Однако оказалось, что авторы, по сути, придумали и описали весьма нетривиальный метод использования нейросети для получения решения задачи структурной/топологической оптимизации физических моделей (хотя и сами авторы говорят, что метод более универсален). Подход очень любопытный, результативный и судя по всему, — совершенно новый (впрочем, за последнее не поручусь, но ни авторы работы, ни сообщество ODS, ни я, аналогов припомнить не смогли), поэтому его может быть полезно знать интересующимся как использованием нейросетей, так и решением разнообразных задач оптимизации.
Читать полностью »

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.

Погружение в свёрточные нейронные сети: передача обучения (transfer learning) - 1

Читать полностью »

Нейросеть для классификации спутниковых снимков с помощью Tensorflow на Python - 1

Это пошаговая инструкция по классификации мультиспектральных снимков со спутника Landsat 5. Сегодня в ряде сфер глубокое обучение доминирует как инструмент для решения сложных проблем, в том числе геопространственных. Надеюсь, вы знакомы с датасетами спутниковых снимков, в частности, Landsat 5 TM. Если вы немного разбираетесь в работе алгоритмов машинного обучения, то это поможет вам быстро освоить это руководство. А для тех, кто не разбирается, будет достаточным знать, что, по сути, машинное обучение заключается в установлении взаимосвязей между несколькими характеристиками (набором признаков Х) объекта с другим его свойством (значением или меткой, — целевой переменной Y). Мы подаём на вход модели много объектов, для которых известны признаки и значение целевого показателя/класса объекта (размеченные данные) и обучаем ее так, чтобы она могла спрогнозировать значение целевой переменной Y для новых данных (неразмеченных).
Читать полностью »

Что такое End2End-распознавание речи, и зачем же оно нужно? В чем его отличие от классического подхода? И почему для обучения хорошей модели на основе End2End нам потребуется огромное количество данных — в нашем сегодняшнем посте.

Классический подход к распознаванию речи

Прежде чем рассказать про End2End-подход, стоит сначала поговорить про классический подход к распознаванию речи. Что он из себя представляет?

End2End-подход в задачах Automatic Speech Recognition - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js