Рубрика «машинное обучение» - 70

image

Слева два человека жмут руки, причем один из них за стеной от камеры. Справа человек в темноте кидает предмет человеку, который звонит по телефону. Снизу — сгенерированная скелетная модель и предсказание действий.

Про радиозрение команды лаборатории CSAIL (Computer Science and Artificial Intelligence Lab) уже писали на Хабре (раз и два), сегодня немного свежих подробностей.

Алгоритм использует радиоволны, а не видимый свет, чтобы определить, что люди делают, не показывая, как они выглядят.

Машинное зрение имеет впечатляющий послужной список. Оно обладает сверхчеловеческой способностью распознавать людей, лица и предметы. Оно может даже распознавать различные виды действий, хотя и не так хорошо, как люди.

Но его производительность ограничена. Особенно трудно машинному зрению тогда, когда люди, лица или предметы частично закрыты. И когда уровень освещенности падает до 0, они, как и люди, практически слепы.

Но есть и другая часть электромагнитного спектра, которая не настолько ограничена. Радиоволны заполняют наш мир, будь то ночь или день. Они легко проходят сквозь стены, передаются и отражаются человеческими телами. Действительно, исследователи разработали различные способы использования радиосигналов Wi-Fi, чтобы видеть за закрытыми дверями.
Читать полностью »

ИИ на отечественном железе

Рассказываем о том, как мы портировали свой фреймворк для нейронных сетей и систему распознавания лиц на российские процессоры Эльбрус.

image

Это была интересная задача, весной 2019 года мы рассказывали об этом в офисе Яндекса на большом митапе про Эльбрус, теперь делимся с Хабром.
Читать полностью »

Тема анализа данных и Data Science в наши дни развивается с поразительной скоростью. Для того, чтобы понимать актуальность своих методов и подходов, необходимо быть в курсе работ коллег, и именно на конференциях удается получить информацию о трендах современности. К сожалению, не все мероприятия можно посетить, поэтому статьи о прошедших конференциях представляют интерес для специалистов, не нашедших времени и возможности для личного присутствия. Мы рады представить вам перевод статьи Чип Хен (Chip Huyen) о конференции ICLR 2019, посвященной передовым веяниям и подходам в области Data Science.

8 лучших трендов International Conference on Learning Representations (ICLR) 2019 - 1

Читать полностью »

Байесовская сеть, валюты и мировой кризис - 1

Эта статья про модель на основе Байесовской сети, которая описывает котировки мировых валют. Я покажу на основе простой метрики, что паттерн поведения котировок мировых валют за последние два года (с начала 2018 по конец 2019) совпадает с тем, который наблюдался в течении двух лет перед началом острой фазы мирового экономического кризиса 2008 года. Результаты моего мини исследования находятся в согласии с мнением многих экспертов о том, что сегодня мировая экономика находится на пороге масштабного экономического кризиса, который может превзойти кризис 2008 года. Также я опишу как я строил модель, где брал данные и дам свой анализ результатов работы модели на примере котировок рубля. Начну с небольшого количества технических деталей.
Читать полностью »

Все началось с увлечения глубоким обучением, нейронными сетями и далее по списку. Я посмотрел пару курсов, поучаствовал в соревновании на Kaggle… "чем бы еще заняться?". Тут мимо как раз по своим делам проползал робот-пылесос (Xiaomi Vacuum Cleaner V1) и подкинул интересную идею…

Превращаем робот-пылесос в универсального солдата - 1

Читать полностью »

При обучении нейронной сети на обучающей выборке на выходе нейросети вычисляются два ключевых параметра эффективности обучения — ошибка и точность предсказания. Для этого используются функция потери (loss) и метрика точности. Эти метрики различаются в зависимости от поставленной задачи (классификация или сегментация изображения, детекция объекта, регрессия). В Keras мы можем определить свои собственные функцию потери и метрики точности под свою конкретную задачу. О таких кастомных функциях и пойдет речь в статье. Кому интересно, прошу под кат.
Читать полностью »

В МТИ искусственный интеллект учат распознавать эгоистичных водителей - 1

Команда исследователей во главе с сотрудниками Лаборатории информатики и искусственного интеллекта Массачусетского технологического института (CSAIL) работает над созданием искусственного интеллекта, который мог бы предсказывать поведение водителей-людей на дорогах. Для этого они используют инструменты социальной психологии.

Учёные обучали систему с помощью так называемой социальной ценностной ориентации (SVO). Этим термином исследователи обозначили степень, в которой кто-то «эгоистичен» или «просоциален» во время вождения. Система наблюдала за поведением водителей и оценивала их SVO для создания траектории движения для беспилотных авто.

Во время тестов система показала, что она может оценивать и предсказывать поведение водителей лучше на 25%, чем до обучения.
Читать полностью »

Перевод статьи подготовлен специально для студентов курса «Machine learning».


Оптимизация стратегии игры в Блэкджек методом Монте-Карло - 1

Обучение с подкреплением штурмом взяло мир Искусственного Интеллекта. Начиная от AlphaGo и AlphaStar, все большее число видов деятельности, в которых раньше доминировал человек, теперь завоевано агентами ИИ, работающими на основе обучения с подкреплением. Короче говоря, эти достижения зависят от оптимизации действий агента в определенной среде для достижения максимального вознаграждения. В последних нескольких статьях от GradientCrescent мы рассмотрели различные фундаментальные аспекты обучения с подкреплением, от основ систем с бандитами и подходов, основанных на политике, до оптимизации поведения на основе вознаграждения в Марковских средах. Все эти подходы требовали полных знаний о нашей среде. Динамическое программирование, например, требует, чтобы мы обладали полным распределением вероятностей всех возможных переходов состояний. Однако в действительности мы обнаруживаем, что большинство систем невозможно интерпретировать полностью, и что распределения вероятностей не могут быть получены в явном виде из-за сложности, врожденной неопределенности или ограничений вычислительных возможностей. В качестве аналогии рассмотрим задачу метеоролога – число факторов, участвующих в прогнозировании погоды, может быть настолько велико, что точно вычислить вероятность оказывается невозможным.Читать полностью »

Эксплуатация машинного обучения в Почте Mail.ru - 1

По мотивам моих выступлений на Highload++ и DataFest Minsk 2019 г.

Для многих сегодня почта является неотъемлемой частью жизни в сети. С ее помощью мы ведем бизнес-переписку, храним всевозможную важную информацию, связанную с финансами, бронированием отелей, оформлением заказов и многим другим. В середине 2018 года мы сформулировали продуктовую стратегию развития почты. Какой же должна быть современная почта?

Почта обязана быть умной, то есть помогать пользователям ориентироваться в увеличивающемся объеме информации: фильтровать, структурировать и предоставлять ее наиболее удобным способом. Она должна быть полезной, позволяя прямо в почтовом ящике решать различные задачи, например, оплачивать штрафы (функция, которой я, к своему сожалению, пользуюсь). И при этом, разумеется, почта должна обеспечивать информационную защиту, отсекая спам и защищая от взломов, то есть быть безопасной.
Читать полностью »

Всем привет! В первой статье из нашего цикла мы узнали, что такое DeepPavlov, какие модели библиотеки готовы к использованию без предварительного обучения и как запустить REST серверы с ними. Перед тем, как приступить к обучению моделей, мы расскажем о различных возможностях деплоймента моделей DeepPavlov и некоторых особенностях настройки библиотеки.

Договоримся, что все скрипты запуска библиотеки выполняются в environment Python с установленной библиотекой DeepPavlov (про установку см. первую статью, про virtualenv можно прочитать здесь). Примеры из этой статьи не требуют знания синтаксиса Python.

DeepPavlov для разработчиков: #2 настройка и деплоймент - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js